
www.manaraa.com



www.manaraa.com

Group Invariance in Engineering 
Boundary Value Problems 



www.manaraa.com

R. Seshadri . T. Y. Na 

Group Invariance in Engineering 
Boundary Value Problems 

With 25 Figures 

Springer-Verlag 
New York Berlin Heidelberg Tokyo 



www.manaraa.com

R. Seshadri 

Syncrude Canada Limited 
Fort McMurray, Alberta 
Canada T9H 3LI 

T.Y. Na 

Department of Mechanical 
Engineering 

University of Michigan-Dearborn 
Dearborn, Michigan 48128 
U.S.A. 

Library of Congress Cataloging in Publication Data 
Seshadri, R. 

Group invariance in engineering boundary value problems. 
Includes bibliographies and index. 
1. Boundary value problems. 2. Transformation groups. 

I. Na, T. Y. II. Title. 
TA347.B69S47 1985 515.3'5 84-26886 

© 1985 by Springer-Verlag New York Inc. 

All rights reserved. No part of this book may be translated or reproduced in any form 
without written permission from Springer-Verlag, 175 Fifth A venue, New York, New 
York 10010, U.S.A. 

9 8 7 654 3 2 1 

ISBN-13: 978-1-4612-9564-8 

DOl: 10.1007/978-1-4612-5102-6 

e-ISBN-13: 978-1-4612-5102-6 



www.manaraa.com

Prefaee 

In the latter part of the last century, Sophus Lie first introduced and 
developed quite extensively the theory of continuous groups of transfor­
mations in connection with the study of differential equations. In the last 
few decades, there has been a revival of interest in group-theoretic meth­
ods and significant progress has been made due to the efforts of several 
mathematicians, engineers and physicists. 

Group-theoretic methods are powerful, versatile and fundamental to 
the development of systematic procedures that lead to invariant solutions 
of boundary value problems. Since the group methods are not based on 
linear operators, superposition or other requirements of the linear solution 
techniques, they are applicable to both linear and nonlinear differential 
models. A number of books on the application of the continuous groups 
of transformations relating to differential equations have been written from 
a mathematical standpoint. In dealing with differential boundary value 
problems in engineering and applied science however, physical aspects as­
sociated with the problems are of importance. Consideration of boundary 
and initial conditions as an integral part of the mathematical description 
becomes an essential part of any group-theoretic analysis. The purpose 
of this book is to provide a comprehensive and systematic treatment of 
group-theoretic methods from a standpoint of engineering and applied sci­
ence, with particular emphasis on boundary value problems. The book is 
intended for senior undergraduate students, graduate students and research 
workers in the areas of engineering and applied science. 

The authors are indebted to Arthur Na for his assistance during the 
preparation of the manuscripts. The second author wishes to express his 
sincere gratitude to Dr. Arthur G. Hansen for introducing him to this 
important method of analysis and for the advice and encouragement re­
ceived through the years. The authors would like to dedicate this book 
to Dr. Arthur G. Hansen in view of the key contributions made by him 
to the area of similarity analysis pertaining to engineering boundary value 
problems. 
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Chapter 1 

INTRODUCTION AND GENERAL OUTLINE 

Physical problems in engineering science are often described by dif­
ferential models either linear or nonlinear. There is also an abundance of 
transformations of various types that appear in the literature of engineer­
ing and mathematics that are generally aimed at obtaining some sort of 
simplification of a differential model. 

Similarity transformations 1.2 '" which essentially reduce the number of 
independent variables in partial differential systems, have been widely used 
in fluid mechanics and heat transfer. 'fransformations have also been used 
to convert a boundary value problem to an initial value problem suitable for 
numerical procedures that employ forward marching schemes 3. In other 
instances transformations have been used to reduce the order of an ordinary 
differential equation. Mappings have also been discovered which transform 
nonlinear partial or ordinary differential equations to linear forms. Underly­
ing these seemingly unrelated transformations is a unified general principle 
which is based on the theory of continuous group of transformations. The 
theory was first introduced and developed extensively by Sophus Lie in the 
latter part of the last century. In recent years, there has been a revival of 
interest in applying the principles of continuous group of transformations 
to differential models, linear as well as nonlinear. In 1950, Birkhoff 4 pro­
posed a method based upon simple groups of transformations for obtaining 
invariant solutions for some problems in the general area of hydrodynamics. 
The method essentially involves algebraic manipulations, an aspect which 
makes the method attractive. Group - theoretic methods are a powerful 
tool because they are not based on linear operators, superposition or any 
other aspects of linear solution techniques. Therefore, these methods are 
applicable to nonlinear differential models. 

A majority of the recent books on the applications of continuous trans­
formation groups 5.6 have been approached from a mathematical stand­
point. In dealing with different boundary value problems in engineering 
science, the physical aspects associated with the problem need to be prop­
erly addressed. The treatment of boundary conditions as an integral part 
of the differential model in group - theoretic methods becomes relevant. 
The purpose of this book is to provide a comprehensive treatment of the 
subject from a standpoint of engineering science, with special reference to 
boundary value problems. Applications of the group-theoretic principles 
involved are presented in a clear and systematic fashion. The contents 
and the treatment of this book are particularly suitable for senior under­
graduate students, graduate students and analytical workers in the area of 
engineering and applied sciences. 

* Numbers in superscripts refer to numbers of references at the end of 
the chapter. 

1 
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The concepts of continuous transformation groups are presented in 
chapter two. This chapter contains the theoretical background needed for 
all the subsequent chapters, and forms the basis for the entire book. 

Chapter three contains a survey of the available methods for determin­
ing similarity transformations. A familiar form of the similarity transfor­
mation is given by u( x, y) = :If f( xyf'l), where a and f3 take on values such 
that the original partial differential equation with independent variables 
x, y and dependent variable u is transformed to an ordinary differential 
equation with variables f and xyfl. The reduction in the number of inde­
pendent variables is a simplification of the original mathematical descrip­
tion whether the resulting description is solved analytically, numerically 
or by using other approximate procedures. Consider, as an example, the 
one-dimensional nonlinear diffusion equation 

~[D( u) au] = au ax ax at 
A similarity transformation of the form 

u = F(d 

(1.1) 

(1.2) 

would transform equation (1.1) to an ordinary differential equation of the 
form 

d dF dF 
-[D(F)-] + 2~- = 0 
~ ~ ~ 

(1.3) 

The similarity transformation, equation (1.2), is just one type of trans­
formation that can be obtained by direct procedures based on assumed 
transformation of the type u( x, t) = (J. F (xl t') , or by the use of dimen­
sional group of transformations. The use of deductive group procedures 
which start out with a general group of transformations lead to some sim­
ilarity solutions that are not obtainable by inspectional group procedures. 
The group - theoretic methods of similarity analysis imply that the search 
for similarity solutions of a system of partial differential equations is equiv­
alent to the determination of solutions of these equations invariant under 
a group of transformations. For boundary value problems, it follows that 
the auxiliary conditions also be invariant under the same group of transfor­
mations. In chapter three, the methods for the determination of similarity 
transformations are classified into (i) direct methods and (ii) group - the­
oretic methods. The group - theoretic methods are further divided into 
inspectional and deductive procedures. In chapter four, the direct as well 
as group - theoretic methods are applied to a variety of nonlinear boundary 
value problems arising in engineering science. 

Traditionally, similarity solutions have been discovered for boundary 
value problems with semi - infinite or infinite domains thus restricting the 
solutions to a narrow class of problems. Chapter five examines the applica­
bility of similarity analysis to boundary value problems in finite domains. 

2 
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The construction of non - similar solutions from similarity solutions 
enables one to extend the similarity methods to a larger class of boundary 
value problems. Non - similar solutions are a result of either the equations 
or boundary conditions not being invariant under a given group of trans­
formations. Techniques such as superposition of similarity solutions, fun­
damental solutions and pseudo - similarity analysis are discussed in chapter 
six for the purpose of obtaining non - similar solutions. 

For moving boundary problems in general, it is necessary to locate the 
similarity coordinate at the moving boundary. When the governing partial 
differential equations are parabolic it should also be ascertained whether the 
speed of propagation of the moving boundary is finite or infinite. Typically, 
analysis of problems that involve a change of phase can be associated with 
a moving boundary that propagates at a finite speed. However if no phase 
change is involved, the propagation of the boundary would be either at a 
finite or an infinite speed. Chapter seven contains a detailed discussion of 
these ideas through appropriate examples. 

Chapter eight deals with boundary value problems that involve prop­
agation of waves. When the propagation of disturbances are along the 
characteristics of the equations, use is made of the similarity - charac­
teristic (SC) relationship for determining the similarity coordinate at the 
wave front. In other instances, where propagation of waves is not necessar­
ily along the characteristics such as shock waves, dispersive and traveling 
waves, the role of group invariance in obtaining similarity solutions is dis­
cussed. 

The technique for transforming boundary value problems to initial 
value problems is discussed in chapter nine. Two methods are described : 
(1) the inspectional group method, and (2) the infinitesinlal group method. 
Both methods start out by defining a group of transformations. The partic­
ular transformation within this group of transformations which can reduce 
the boundary value problem to an initial value problem is identified by 
stipulating the requirement that (a) the given differential equation be in­
dependent of the parameter of the transformation, and (b) the missing 
boundary condition be identified with the parameter of transformation. 

Inspectional as well as deductive procedures for transforming a non­
linear differential equation to a linear differential equation is discussed in 
chapter ten. These procedures are based on the use of groups of point 
transformations which act on a finite dimensional space. Effort has been 
made to keep the treatment of the subject as simple as possible and to bring 
out the underlying principles involved clearly. Recent developments have 
shown that differential equations can be invariant under a continuous group 
of transformations beyond point or contact transformations. The groups 
known as the Lie - Backlund (LB) transformations act on an infinite dimen­
sional space. Details for discovering mappings that transform nonlinear to 
linear differential equations using LB transformations are available in the 
works of BIuman and Kumei 7,and Anderson et al 8 . The LB transforma-

3 



www.manaraa.com

tion approach is not covered in this book. 
Miscellaneous topics such as the reduction of differential equations into 

algebraic equations, reduction of the order of an ordinary differential equa­
tion, transformation of ordinary to partial differential equations, and re­
duction of the number of variables using multiparameter group of transfor­
mations are covered in some detail in chapter eleven. Also covered in this 
chapter are self - similar solutions of the first and second kind 9.10. The 
Hellums - Churchill procedure for the determination of normalized repre­
sentation suitable for dimensional scale - modeling and semi - analytical 
investigations is briefly discussed. 

Throughout the entire book, the authors have endeavoured to cater to 
the needs of (a) a novice in the area of group theory, and (b) the analytical 
worker seeking to use the more rigorous deductive group procedures. It is 
hoped that the book will adequately address some of the needs of students 
and researchers in engineering science who are seeking to apply group -
theoretic methods to nonlinear boundary value problems. 
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Chapter 2 

CONCEPTS OF 
CONTINUOUS TRANSFORMATION GROUPS 

2.0 Introduction 

The foundation of the group - theoretic method is contained in the 
general theories of continuous transformation groups that were introduced 
and treated extensively by Lie 1, Lie and Engel 2 and Lie and Scheffers 
3 in the latter part of the last century. Subsequently, the books by Co­
hen 4, Campbell 5, Eisenhart G, Ovsjannikov 7, BIuman and Cole 8, have 
contributed greatly to the development and clarification of many of Lie's 
theories, particularly its applications to the invariant solutions of differen­
tial equations. In the literature of engineering and applied sciences, the 
works of Birkhoff 9, Morgan 10, Hansen 11, Na, Abbott and Hansen 12, Na 
and Hansen 13 and Ames 14.15 give quite extensively the general theories in­
volved in the similarity solutions of partial differential equations as applied 
to engineering problems. It is assumed, however, that the average engi­
neer may not be thoroughly acquainted with the concepts of that branch 
of modern algebra designated as group theory. For this reason as well as 
for clarifications of the terms and concepts involved, a brief review of some 
of the key aspects of the theory of transformation groups will be given in 
this chapter. Emphasis will be placed on presenting the ideas of Lie groups 
in a simple and clear manner suitable for an engineer and scientist, instead 
of the rigorous and mathematically elegant approach used in the books by 
Eisenhart G, Ovsjannikov 7 and BIuman and Cole 8. 

2.1 Group Approach 

Quite simply, an algebraic group is a set (collection of elements) which 
has some sort of operation defined between its elements. In addition, a 
certain set of rules and statements regarding the elements and the defined 
operation must be satisfied. The elements in a set can be anything: inte­
gers, complex numbers, vectors, matrices, transformations etc. One impor­
tant criterion, however, is the definition of an operation of these elements. 
Typical operations are integer additions, complex number multiplications, 
vector additions and successive transformations. 

The rules which a set of elements must obey under a given operation 
are stated below, where the symbol * denotes the binary operation between 
two elements a and b of a set G. A set G is called a group if 
(1) The set of elements is closed under a given operation. IT a and b are 

two elements of the set, then 

where c is also an element of the set. 

5 
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(2) There exists an identity element I such that 

(3) Every element in G has an inverse in G for the operation *. Thus, 
given any element a, there exists an element a -1, known as its inverse 
such that 

(4) The operation * is associative. Thus, 

As an example of a group, let us consider the set of integers Z associ­
ated with the operation of addition in Z. 
(1) Since addition of an integer to an integer gives an integer, the set Z is 

closed. 
(2) If n is an integer, then 

n+O=O+n=n 

and the set consists of an identity element (0). 
(3) Since the set Z includes both positive and negative integers, the set 

has the property that 

n + (-n) = (-n) + n = 0 

(4) If I, m and n are elements of the set Z then 

(l+m)+n=I+(m+n) 

Therefore, the set Z associated with the operation of addition is a 
group. This group is usually referred to as the additive group. 

As a second example, consider the multiplicative group of non-zero 
complex numbers. Let C be the set of all non-zero complex numbers asso­
ciated with the operation of multiplication whose elements are x = a + ib, 
where a and b are real numbers, and x ;f 0 + iO. The following properties 
can be established: 
(1) The set is closed, since the product 

( a + ib)( e + id) = (ae - bd) + i( ad + be) 

is a unique element in C. 
(2) The element 1 + iO is clearly the identity element in C, since 

( a + ib)( 1 + i 0) = (1 + i 0)( a + ib) = a + ib 

6 
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(3) The inverse of a given element a + ib is 

smce 

( 2 a b2 - i 2 b b2 ) ( a + ib) = (a + ib) ( 2 a b2 - 2 ib b2 ) = 1 
a+ a+ a+ a+ 

(4) Suppose a + ib, c + id and e + if are elements of the set C, then 

[( a + ib)( e + id)]( e + if) = [( ae - bd) e - (be + ad)f] 

+i[(be + ad)e + (ae - bd)/] 

(a + ib)[ ( e + id)( e + i/)] = [a( ee - d I) - b( de + en] 

+i[b(ee- dl) + a(de+ en] 

It follows from above that the associative law is satisfied. As a result, the 
set of non-zero complex numbers associated with the operation of multipli­
cation is a group. 

2.2 Transformation Groups 

Let r(xl , ... , Xnj aI, ... , ar)j (i = 1, ... , n) be a set of functions contin­
uous in both the variables xi and aj . We will also assume the continuity of 
derivatives as may be required in the following discussions. The variables 
aj are the parameters of the functions. The aj are assumed to be "essential 
parameters", i.e., it is not possible to find (r - 1) functions of aj : a1(a), ... , 
Qr-l(a) such that 

f '( 1 n. 1 r) Fi( 1 n. 1 r-I) X , ... ,x ,a , ... ,a = x ,,,.,x ,a , ... ,a 

If the aj are not essential parameters, it means that fewer parameters 
can be constructed from the aj to serve the same purpose in a function. 

We now consider a set of functions r as a set of transformations de-
d· h 1 r dr' . (I m) pen mg on t e parameters a , ... , a ,an translormmg a pomt x , ... , x 

. t (-1 -m)· m 0 x, .'" x ,I.e., 

-Xi - ,'(x1 xn. a1 ar ) - , ... ," ... , 

Successive transformations employing various sets of functions are consid­
ered to be the "operation" of the set. We will establish that the set of 
functions associated with the "operation" of a transformation is a group. 
Clearly, for this to be valid, the four conditions listed previously must be 
met. The conditions are 

7 
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1. The set is closed. 
2. There exists an identity transformation such that '" 

3. Given any transformation Tal, an inverse transformation ! exist such 
that 

4. The associative law is true, i.e., 

As an example, let us consider the set of one-parameter transformation 
defined by 

TaX: Xl = [x1cos(a) - .:?sin(a)]ea 

x2 = [x1sin(a) + ~cos(a)]ea 
and prove that it constitutes a group of transformations. The parameter a 
is assumed to be real. 

1. To show closure,. we have 

or, 
~1 = [(x1cos(a1) - ~sin(a1))cos(a2) 

-(x1sin(a1) + .:?cos(a1))sin(a2)]ea2+al 

= lx1cos(a1)cos(a2) - .:?sin(a1)cos(a2) 

Xl sin( a1) sin( a2) + X2 COS( a1) sin( a2) ]ea2 +a 1 

• For a particular set of aj , say, a: , ... ..... ,a;, the transformations 

is written as T~l z = z. Similarly, the function ,*i which represents 
the inverse functions of J\ and transforms a point (z\ ...... , zn) into 
(zl, ...... ,z,,) can be written as T:lz =X. Two different sets of values 
are defined by different sets of values of the aj • Thus, if a~ , ...... , a; is 
a set of v~ues distinct from a; , ...... , a;, we consider T~l and T~2 to be 
different transformations. 
For an inverse to exist, the Jacobian of the t with respect to the zi is 
non-vanishing for a set of values of zi. 

8 
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= l(x1cos(a1 + a2) - :?sin(a1 + a2)]eal+a2 

IT a3=a1+a2 is real, then we see that 

Similarly, 

Therefore, the given set of transformation satisfies the closure require­
ment. 

2. The identity transformation is determined by the values ai =0, i.e., for 
ai=O 

3. Let 

and 

Tal: Xl = [x1 cos(af} - :?sin(an]ea; 

z2 = [xl sin(aD + :?cos(aD]ea: 

be a given transformation. The transformation defined by at = - at is 
the inverse transformation, since 

Therefore, 

Similarly, 

_(Xl sin( ail + :? cos( ai))ea; sin( -aD!e -a; 

= [x1(cos(ailcos(-ai) - sin(ai}sin(-ai)) 

_x2 (sin( aD cos( - ai) + cos( ai )sin( -ai)) !e(a:-a:} 

= [x1 (cos(ai - an - :?sin(ai - an] = xl 

Therefore, the inverse transformation 

is satisfied. 

9 
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4. As a final step,we need to establish associativity. This can be shown 
quite readily as follows: 

Ta3 (Ta2 Tadx : 

-~sin[a3 + (a2 + al )])e(a3 +(a'+a 1 )) 

~2 = (xl sin[ a3 + (a2 + al ) I 

Similarly, 

(TasTa2)Tal X : 

+~cos[aS + (a2 + al )De(a3+(a'+a1 )) 

~l = (xl cos[( a3 + a2) + al]_ :? sin[( as + a2) 

+al Del! a3 +a')+a1 J 

~2 = (xlsin[(aS + a2) + all + ~cos[(aS + a2) 

+al]) el( a3 +a2 )+a IJ 

Thus, the group property of a transformation has been established. 

2.3 The Concept of an Infinitesimal 'Transformation 

Having established the group character of a set of transformations, we 
now proceed to introduce the concept of an infinitesimal transformation. 
The discussion here will be limited to a one-parameter group. 

A group is said to be continuous if its elements are identified by a set 
of continuous parameters. Thus, a set of transformation 

x= <p(x,1/,a) y = 1/1 (x, 1/, a) (2.1) 

is an example of a one-dimensional continuous group of transformation. 
Since <p and 1/1 are continuous functions, the transformation can be 

written as 
(2.2) 

where ao is the value of the parameter corresponding to the identical trans­
formation,i.e., 

x = <p(x, 1/, ao) = x ; y = 1/1 (x, 1/, ao) = !I (2.3) 

and € is an infinitesimal quantity which changes x and y by an infinitesimal 
amount and is defined as an infinitesimal transformation. 

10 
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Expanding in Taylor series, Eq.(2.2} becomes 

+ .......... .. 

and 
_ € at/; €2 a2t/; 
y = t/;(x, y, ao) + 11 (a) au + 2! (aa2)au 

+ .......... .. 

Since € is an infinitesimal quantity, Eq.(2.4) then becomes 

where 

x= x+€e(x,y) + O(€2) 

Y = y + €'1(x, y) + O(€2) 

a~ 
e(x,y) == (a)au 

at/; 
'1(x,y) = (aa)/ltl 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 

and the relation for the identical transformation, Eq.(2.3), has been used. 

Eq.(2.1) is the "global transformation group" and Eq.(2.5) is the "in­
finitesimal transformation group". 

2.4 Relation Between Global and Infinitesimal Groups of "fransformations 

A given function f(x,y) would be changed to /(XI, Yd if it is subjected to 
the infinitesimal transformation defined by Eq.(2.5). Expanding in Taylor 
series, /(XI' Yd becomes 

€ €2 
==/(x,y) + ,U/+ ,U2/+ ........ 

1. 2. 
(2.6) 

where 

u/=ea/+'1 a/ 
ax ay 

and Un/represents repeating the operator n times. 

Example f.1 Consider the infinitesimal transformation represented by 

a/ a/ U/= -y- +x-
ax ay 

11 
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This means that the transformation functions, Eq.(2.5), are given by 
e(x,y) = -Yi7](X,y) = x. 

In order to obtain the global group, the following subsystem must be 
solved: 

dx dy da 
-=-=-
-y x 1 

Eq.(2.7) can be rewritten as 

dx 
-=-y 
da 

d-Y --=x 
da 

The solutions of Eqs.(2.8) can be written as * 

(2.7) 

(2.8) 

(2.9a) 

(2.9b) 

To determine the four constants, we first substitute Eqs. (2.9) into 
Eqs.(2.8) and get 

The identity transformation is obtained by setting a=O. Eqs.(2.9) 
therefore give 

Cl = x and C3 = Y 

The global group of transformation can be written as 

x = x cos(a) - y sin(a) (2.lOa) 

y = Y cos(a) + x sin(a) (2.10b) 

Example 2.2 Consider the infinitesimal transformation represented by 

The transformation functions are given by 

* Combining Eqs.(2.8), we obtain 

d2 fJ 
-+fJ=O 
da 2 

12 
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To obtain the global group, the following subsystem must be solved: 

dx dy da 
-=-=-
CIX C2Y 1 

Integrating Eq.(2.11), we get: 

(2.11) 

(2.12) 

To obtain the identity transformation, we set a = O. Therefore, ).1 = x and 
).2 = y, and the global group of transformation is 

(2.13) 

where A = ea is the parameter. Transformations represented by Eq.(2.13) 
form a "linear group of transformation". 

Example 2.9 It can sinlilarly shown that the infinitesimal operator 

would correspond to the one-parameter global "spiral group of transforma­
tion": 

(2.14) 

2.5 The Concept of Invariance 

A function f(x,y) is said to be invariant under the infinitesimal trans­
formation defined by Eq.(2.5), if it is unaltered by the transformation,i.e., 

!(x, y) = !(x, y) (2.15) 

Eq.(2.6) shows that Eq.(2.15) will be satisfied if Uf, rPf, U3f, etc. are si­
multaneously equal to zero. However, since [J2 i= U(Uf) and US i = U( [J2 i), 
it follows that the condition 

ai ai 
Uf=~-+t'J-=o ax ay 

is both necessary and sufficient requirement for invariance of f(x,y). 

(2.16) 

Based on the above theorem, the "invariant function" under a given 
group of transformations represented by Uf can be solved from Eq.(2.16). 
From elementary theories of partial differential equations 16, we have 

dx dy 
-=-e t'J 

(2.17) 

13 
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The solution to this equation is given by O(x, y)=constant, which is the 
required invariant function corresponding to an operator U. Since Eq.(2.17) 
has only one independent solution depending on a single arbitrary constant, 
a one-parameter group of transformations in two variables has one and only 
one independent invariant. 

Example 2.4 Consider the rotation group given in Example 2.1. The so­
lution to the equation 

dx dy 
-=-
-y x 

is :? + y2=constant, and is the invariant function of the rotation group. 

Example 2.5 Consider the linear group given in Example 2.2. The solution 
of the equation 

dx dy 
-=-

gives the invariant function 

Example 2.6 Consider the spiral group given in Example 2.3. The solution 
to the equation 

dx dy 
Cl C2 Y 

gives the invariant function yl eer =constant where c=c21 Cl' 

The above concept can easily be generalized to n variables. For n 
variables, the condition for a function f(Xl, .•..• ,xn ) to be invariant under a 
one-parameter group of transformation 

(i = 1, ..... , n) (2.18) 

is 

(2.19) 

The invariant functions can then be solved from the following system of 
equations 

dXl dXn 
-=-
6 ~n 

(2.20) 

14 
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Since there exists (n-l) independent solutions to Eq.(2.20), it follows that 
a one-parameter group of transformations in n variables has (n-l) indepen­
dent invariants. 

2.6 Invariance of Differential Equations Under Groups of Transformations 

A basic theorem on the determination of relationships satisfied by func­
tions admitting a given group of infinitesimal transformation will now be 
gIven. Consider a function 

the arguments of which, assumed p in number, contain derivatives of Yi up 
to order k. Such a function is known as a differential form of the k - th order 
in m independent variables. IT the arguments are designated by ZI, .... , zp, 
where 

. ak Yn 
zp-l = ( )k a Xm-l 

akYn 
Zp = a(Xm)k 

the function <p can be written in a simpler form as 

<p = <p(ZI, .... ,z,,) (2.21) 

The function <p is said to be invariant under the group of infinitesimal 
transformation defined by 

(2.22) 

(i= l, .... ,p) 

if U<p = 0 , i.e. , 

C ( ) alP C ( ) alP - 0 .. 1 ZI, .. "zl' -a + ........ + .. ,. ZI, .... ,Zp -a -
Z1 z,. (2.23) 

It was shown that for a group of transformations with p variables, 
Eq.(2.22},there are (p-l) functionally independent invariants: 

'7m = Om(ZI, .... ,z,.) = constant (2.24) 

15 
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(m= 1, .... ,p -1) 

satisfying Eq.(2. 19) ,i.e., 

(2.25) 

Now, if a change of variables is made of the given function !p, Eq.(2.21), 
from (ZI, ..... ,zp) to ('71, ... ,'7P-l,ZI))' we get 

(2.26) 

The condition of invariance of !p, Eq.(2.23} becomes 

at/J a'71 at/J azp 
4>=6(-a -a +······+a--a )+ ..... 

'71 zl zp ZI 

at/J a'7,.-1 a'7p-l 
+-a--(el-a-- + .... + ep-a-) 

'7p-l ZI Zp 

at/J +(6 + .... + ~p)-a = 0 (2.27) 
zp 

Based on Eqs.(2.24) and (2.25), all the terms in Eq.(2.27) except the last 
term are zero and, as a result, the following important conclusion is ob­
tained: 

at/J(f71, ... , '71'-1; Zp) 
-----''---- = 0 

azp 

which means t/J is independent of ZI'. Eq.(2.26) then becomes 

(2.28) 

Thus, the conclusion that if !p is invariant, it is then expressed in terms of 
(p-l) functionally independent invariants,i.e., 

(2.29) 

As a result, the number of variables is reduced by one. 
Morgan 10 proved the above theorem in a different manner. A brief 

outline will be given below. Assuming that Yj are the dependent variables 

16 
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and Xi the independent variables in the one-parameter group of transfor­
mations 

Ta: Xi = fi(Xl, ..... , Xm; a) 

Y,' = hi(Yb ..... , Yn; a), 

the system of partial differential equations of order k 

is invariant under this group of transformation, Ta,if each of the 4>i is 
"conform ally invariant" under the transformation Ta k *. This means that 

akYn 
·<p[X1, .•. ,Xm ;Y1, .•. 'Yn; .••• ' ( )kJ a Xm 

(2.30) 

If F = f( a), <Pi is said to be "constant conform ally invariant" under 
Ta k • In particular, if F=f(a)=1, <Pi is said to be "absolutely invariant" 
under this group of transformation. 

The above result leads to the theorem of Morgan lO : 

Theorem: Suppose that the forms <Pi are conform ally invariant under the 
group Ta k, then the invariant solutions of <Pi = 0 can be expressed in terms 
of the solutions of a new system of partial differential equations. 

(2.31) 

The '1i are the absolute invariants of the subgroup of transformations on 
the Xi alone and the variables Fi are such that 

Although the same conclusions' are obtained above, the method devel­
oped by Birkhoff 9 and Morgan 10 for a given group of transformations has 
been found to be the simplest to apply. The invocation of invariance has 
also led to (a) extremely successful deductive methods for obtaining various 
groups of transformations from a general form as evidenced by the series 

* We append the transformation T. by a set of transformations of the 
derivative of the 1/J up to k. The enlarged group is called T. k • 

17 
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of works by Moran and Gaggioli, and N a and Hansen, and Bluman and Cole 
presented in chapter 3, (b) the transformation of boundary value problems 
to initial value problems, covered in chapter 9, and (c) discovering map­
pings that transform nonlinear differential equations to linear differential 
equations as discussed in chapter 10. 

2.7 The Extended Group of Transformations 

For the one-parameter group of transformations 

x = cp(x, y, a) y = t/J(x, y, a) 

defined in Eq. (2.1), the differential coefficient p( =dy / dx) can be considered 
as a third variable which, under this group of transformations, will be 
transformed to p by the following transformation function: 

_ dy ~ + ~. p P( ) 
p = dx =!& ~ = x, y, pj a 

lJz + lJy'P 

It can be easily shown that the more general transformation 

x = cp(x, y, a) y = ¢l(x, y, a) 

p=P(x,y,pja) 

(2.32) 

(2.33) 

forms a group 17, which is known as the extended group of the group given 
in Eq.(2.1). 

Next, the differential coefficient p for the infinitesimal transformation 
defined in Eq.(2.5) is sought. It can be shown that the expansions given in 
Eqs.(2.4) can be written as 17 

_ € €2 ae ae] 
x= x+ ,e(x,y) + ,[e-a + '7-a + .... 

1. 2. x y 
(2.34a) 

(2.34b) 

The differential coefficient p given in Eq.(2.32) then becomes 

_ dy + TI(~dx+ ~dy) + .... 
P = d· ~ (~d ~ d ) x + iT az x + ay Y + .... 

€ a'7 a'7 ae ae 2 
=P+-'[-a +(-a --a )p--a p]+ ..... 

1. x y x y 

18 
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or,if higher-order terms of € are omitted, 

where 
arJ arJ ae ae 2 dz/y,P) = - + (- - -)p--p 
az 8y ax ay (2.35) 

Thus, the group of transformations defined by Eq.(2.5) and Eq.{2.35) si­
multaneously,i.e., 

x= x+ €e(x,y) + O(€2) 

Y = Y + €'7(ZI y) + O(€2) 

P = P + €dXI Y, p) + O(€2) 

(2.36) 

form a group known as the "extended infinitesimal group of transforma­
tions". Note here that p is considered as an independent variable. 

Extension of the concept to higher order derivatives can be made based 
on the same reasoning. Consider now the second- order derivative, 

dp tPy 
q=-=-dx dx2 I 

which may be considered as an independent variable. Under the group 
of transformation defined by Eq.(·2.33), q will be transformed to q by the 
following relationship: 

= Q(z,y,p,qj a) 

The group of transformation defined by 

x= 4> (x, y, a) y = ,p(z, y, a)j 

p = P(ZI Y,P, a) q= Q(z,y,p,q,a) 

is known as the "twice-extended group of transformations" . 

(2.37) 

(2.38) 

We can write the twice extended group of infinitesimal transformations 
as follows: 

x= z+€e(z/y) + O(€2) 

Y = Y + €rJ(Z, y) + O(€2) 

P = p+ €dz/y,P) + O(€2) 

q = q + €6(x, Y, p, q) + O(€2) 

19 
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where 
a~ a~ a~ ae ae 

6(x,y,p,q) = ax + Pay + qap - q(ax + Pay) (2.40) 

The concept can be extended to higher-order derivatives. Three ex­
amples on the concept of extended group are given below. 

Example e. 7 For the rotation group represented by 

af af 
Uf=-y-+x-

ax ay 

it can be easily shown that the extended group of infinitesimal transforma­
tions is 

x= x+ €e(x,y) + O(€2) 

Y = y + €'7(x, y) + O(€2) 

P = p + €dX, y, p) + O(€2) 

where e = -y,'1 = x, and from Eq.(2.35}, 

a'1 a'7 ae ae 2 2 
~=-+(---)p+-p =l+p ax ay ax ay 

The symbol for this extended group of transformation is therefore 

Example e.8 For the linear group , the extended group of transformation 
can be shown to be represented by 

Example e.9 For the spiral group, the extended group of transformations 
can be shown to be represented by 

af af af 
Uf= Cl- + C2- + C2P-ax ay ap 

2.8 The Characteristic Function 

In this section, we will express the functions 

e(x,y) j '1(x,y) j dx,y,p) j 6(x,y,p,q) 

20 
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in terms of a single function. Let us define an infinitesimal group of trans­
formations 

x= x+€e(x,y) + O(€2) 

Y= Y+€1/(X,y) + O(€2) 

where e and '7 are the transformation functions of the group. 
Let y = y(x) be a solution of the ordinary differential equation 

My=O 

(2.5) 

(2.41) 

where M is a linear or nonlinear differential operator. IT the differential 
equation is invariant under Eq.(2.41) the solution must map into itself,i.e., 

y(x) = y(x, y,€) (2.42) 

In terms of the infinitesimal transformation, Eq.(2.42) can be written as: 

(2.43) 

Expanding the left side of Eq.(2.43) and equating coefficients of €, we get: 

(2.44) 

Eq.(2.44) is called the "invariant surface equation". 
Solution of Eq.(2.44) would lead to the following transformation: 

In order to express E and '7 in terms of a single function called the "char­
acteristic function" ,W, we rewrite Eq.(2.44) as: 

(2.45) 

where p=dy/dx. It is seen that the characteristic function is indeed the 
invariant surface. 

From Eq.(2.45), it can be seen that 

8W 
'7=p-- W 

8p 

For the extended group of transformation, 

p = p+ €dx,y,p) + O(€2) 

q= q+€c(x,y,p,q) + O(€2) 

21 
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For the function ~, Eq.(2.35} gives: 

(2.48) 

or, 
aw aw 

d x, 1.1, p) = - a x - p a 1.1 = - X( W) (2.49) 

where the operator 

For the function 6, Eq.(2.40) gives 

a w a2 w a2 w a2 w a2 w 
- q( a 1.1 + a pa x + p a pa 1.1) - q( a xa p + P a ya p) 

a2 w a2 w a2 w a w 
= -( ax?- + 2Paxay + p2 ay2 ) - qay 

a2 w a2 w 
-2q( axap + p ayap) (2.50) 

or, 
a a 

6(x,y,p,q) = -(XZ + 2qX ap + qay) W (2.51) 

where 
XZ = a2 () + 2p a2() + p2 a2 () 

ax?- axay a 1.12 

The same approach can be followed to obtain the transformation function 
* of the third-order derivative, r( = d3 1.1/ dx3 ), where 

(2.52) 

with 
a6 a6 

p(x, y,P, q, r} = ax + a,P 

a6 a6 ae ae 
+-q + -r- r(- + -p) ap aq ax ay (2.53) 

• In this book, the terms "transformation functions" and "infinitesimals 
of a group" are used interchangeably. 
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In terms of the characteristic function, W, we have 

aw aw a2w 
-p = XS w + 3q~( ap ) + 3qX( ay ) + 3q2 (ayap) 

aw aw 
+r[3X( ap ) + ay 1 (2.54) 

where X( ) and X2( ) are defined in Eqs.(2.49) and (2.51), and 

X3 () = a3 ( ) + 2p a3() + p2 a3( ) 
az3 ax2ay aroy2 

a3( ) a3( ) 2a3( ) 
+P[ayax2 + 2p aroy2 + p ay3 1 (2.55) 

2.9 'Iransformations Involving Two Independent Variables 

We will now consider transformation in which the number of indepen­
dent variables is two. Such transformations are needed if partial differential 
equations are to be treated. Choosing t and x as the independent variables 
and u as the dependent variable, we now introduce the infinitesimal trans­
formation 

1= t+€Q:(t,x,u) + O(€2) 

x= x+€,8(t,x,u) + O(€2) 

u= u+€dt,X,u) + O(€2), 

(2.56) 

where Q: ,/3 and ~ are the transformation functions. Let u = u( x, t) be a 
solution of the partial differential equation 

Mu=O (2.57) 

where M is a nonlinear or linear differential operator. IT the differen­
tial equation, Eq.(2.57), is invariant under the group of transformation, 
Eq.(2.56)' the solution must map into itself, i.e., 

u( x, 1) = u( X, t, u, €) (2.58) 

In terms of the transformation functions, Eq.(2.58) can be written as: 

Expanding the left-hand side of Eq.(2.59) and equating the coefficients of 
€, we get: 

au au 
/3 ( u, x, t) a x + Q: ( IL, x, t) at = d u, x, t) (2.60) 
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Eq.(2.60) is the "invariant surface condition". The solution of Eq.(2.60) 
would lead to the similarity transformation 

'1 (x, t) = constant 

u(x, t) = F(x, t,'1J('1))' 

In order to express a,{3 and ~ in terms of the characteristic function, W,we 
rewrite Eq.(2.60) as: 

where 

w = ap+ (3q - ~ 

au 
p=­at 

au 
q=­ax 

(2.61) 

It can be seen that the characteristic function is the invariant surface equa­
tion. Using Eq.(2.61), we have 

aw 0.=-ap 

f3=aw aq 
aw aw 

~ = p ap + qaq - W 

(2.62) 

Eqs.(2.62) give 0.,/3 and ~ as functions of the characteristic function, W. 
Next, the group is extended to include the differential coefficients p 

and q, i.e., 
p = p + €1I"1(t,x, U,p, q) + 0(€2) 

q = q + €1I"2(t,x, U,p, q) + 0(€2) (2.63) 

The extended transformation functions or infinitesimals of the group, 11"1 

and 11"2 can be expressed in terms of a, f3 and ~. Details are as follows: 

from which, 

at a [- )] 2) at = at t-€a(t,x,u + O(€ 

aa aa 2 
= 1 - €(- + -p) + O(E ) at au 

24 
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Similarly, we have 

from which 

Next, we have 

Therefore, 

Finally, we get 

ax a 2 
ax = ax!x - e,B( t, x, u)] + O(e ) 

= 1 _ e(a,B + a,B q) ax + 0(e2) 
ax au al 

at a al = alit - ea(t,x, u) + 0(e2)] 

a 
= -e ax!a(t,x, u)] + 0(e2) 

= _e(aa + aa q) a~ + 0(e2) 
ax au ax 

at aa aa 2 -= = -e(- + -q) + O(e ) ax ax au 

;~ = %t l2:- €,B(t,x,u) + 0(€2)] 

a 
= -€ at!,B(t,x,u)] + 0(e2) 

= _e(a,B + a,B p) + 0(e2) at au 

(2.65) 

(2.66) 

(2.67) 

Using Eqs.(2.64) to (2.67) and the chain rule of differentiation, we can 
obtain the derivatives: 

ail a 2 
at = at[u+es"(t,x,u) + O(e )] 

a at a ax 2 = at[u+es"(t,x,u)]at+ ax[u+edt,x,u)]at+O(e) 

a~ a~ ao: aa 
= [p + e( - + -p)][l - e(- + -p)] at au at au 

a~ a~ a,B a,B 
+[q+e(ax + auq)][-e(Tt+ au p)]+0(e2 ) 

Therefore, 
ail a~ a~ ao: aa 

p = -:: = p+e[- + -p- p(- + -p) at at atL at au 
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ap ap 
-q(_ + _p)] + O(€2) 

at au 
(2.68) 

and ai a 
ax = ax[u+€dt,x,u) + O(€2)] 

a at a ax 
= at[u+€dt,x,u)]ax + ax[u+€dt,x,u) ax + O(€2)] 

= [p + €(a~ + a~ q)][_€(aa: + aa: q)] 
at au ax au 

a~ a~ ap ap 
+[q + €(ax + au q)][1 - €( ax + au q)] + O(€2) 

Simplifying, 

The extended transformation functions 11'1 and 11'2 can now be written as 

a~ a~ aa: aa: 2 
11'1 = -+(-- -" )p--p at au at au 

ap ap 
-q(- + -p) at au (2.70) 

a~ a~ ap ap 2 
11'2 = - + (- - -)q - -q 

ax au ax au 
aa: aa: 

-p(- + -q) ax au (2.71) 

In terms of the characteristic function, W, the above equations become: 

aw aw 
1I'1=---P-at au (2.72) 

aw aw 
1I'2=---q~ 

ax au (2.73) 

Higher-order derivatives can be derived in a similar manner. 

2.10 Transformation Involving Two Dependent and Two Independent Vari­
ables 

We will now consider transformation in which the number of dependent 
and independent variables are two. Let the dependent variables be u(t,x) 
and v(t,x). We introduce the infinitesimal transformation 

t= t+€a:(t,x,u,v) + O(€2) 
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x = x + €,8( t, x, u, tI) + O(€2) 

u= u+€dt,x,u,tI) + O(€2) 

V = tI+€O(t,x,U,tI) + O(€2) 

(2.74) 

Let u(x,t) and v(x,t) be the solutions of partial differential equations: 

i= 1,2 (2.75) 

where Mi can be linear or nonlinear differential operator. H the differen­
tial equations, Eq.(2.75), are invariant under the group of transformations 
defined by Eq.(2.74), the solutions must map into themselves,i.e., 

u(x, t) = u(x, t, u, tlj €) 

v(x,t) = v(x,t,u,Vj €) 

In terms of the infinitesimals, Eq.(2.76) can be written as: 

u{ x + €,8j t + €a) = u( x, t) + €d t, X, U, tI) + O( €2) 

tI{x+€,8jt+€a) = tI(x,t) + €o(t, x, u, tI) + O(€2) 

(2.76) 

(2.77a) 

(2.77b) 

Expanding the left-hand sides of Eqs.(2.77) and equating the coefficients of 
€, we get: 

au au 
,8(x,t,u,tI) ax +a(x,t,u,tI)'8t- dt,x,u,v) =0 (2.78a) 

atl atl 
,8(x,t, u, v) ax + a(x, t, u, tI) at - o(t, x, u, v) = 0 (2.78b) 

Eqs.(2.78) are the invariant surface conditions, and lead to the similarity 
transformation 

" (x, t) = constant 

u(x,t) = F(x,t,,,'/(,,)) 

v( x, t) = G( X, t,,,, g(" )) 

In order to express a, ,8, ~ and 0 in terms of two characteristic functions, 
W1 and W2 , we rewrite Eq.(2.78) as 

where 
au 

Pu =­at 

27 
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av 
P21 =­at 

av 
P22 = ax' 

It can again be seen that the characteristic functions are the invariant 
surface equation, rearranged. 

From Eqs.(2.7)' it can be seen that 

a WI aW2 
a=--=--

apu ap21 

a WI a WI 
~ = Pu-- + PI2-- - WI 

apu 8P12 
(2.80) 

r 

a W2 a W2 
S = P21-- + P22-- - W2 

ap21 ap22 

Eqs.(2.80) express the transformation functions or the infinitesimals of the 
group, a, (3, ~ and S in terms of the characteristic functions WI and W2. 

Next, the group is extended to include the coefficients Pu ,P12 ,P21 and 
P22, namely, 

Pu = Pu + 1I"u (t, x, u, v, P U, P12, P21, P22) + O{€2) 

1'12 = P12 +1I"12(t,x,U,V,PU,PI2,P21,P22) + O{€2) 

1'21 = P21 +1I"2t{t,x,U,V,PU,PI2,P21,P22) + O(€2) 

1'22 = P22 + 11"22 (t, x, u, v, P U, P12, P21, P22) + O(€2) 

(2.81a, b, c, d) 

The extended transformation functions 11"11 ,11"12,11"21 and 11"22 can be ex­
pressed in terms of a,(3,~ and S. Details are given below: 

from which, 

or, 

at a (- 2 1 a1= a1 t-€a(t,x,u,v) + O(€ ) 

aa: aa aa: at 2 = 1- €[- + -Pu + -P211-= + O(€ ) at au av at 

at aa: aa aa 2 
a1 = 1- ~:[-at + au Pu + avP21] + O{€ ) (2.82) 

Similarly, we get 
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Next, we have 

and similarly 

With the above relations, we can now obtain the transformed derivatives 
as follows: 

au a [ ( ) 2 I at = at u+€~ t,x,u,v + O(€ ) 

a at a ax 2 
= at[u + €~I at + ax[u + €~I at + O(€ ) 

a~ a~ a~ 
= [Pll + €(at + au Pll + av P2dl ' 

aCt aCt aCt 
[1 - €( at + au Pu + av P2dl 

a~ a~ a~ 
+[P12 + €(ax + au P12 + av P22 )1' 

a{3 o{3 a{3 2 
[-€( at + au Pu + av P2dl + O(€ ) 

Therefore, 
_ au a~ a~ a~ 
Pu = at = PH + €[( at + au Pll + av P2d 

aCt aCt aCt 
-Pu( at + au Pll + av P2d 

a{3 a{3 a{3 2 
-P12(ai + auP12 + avP2dl + O(€ ) (2.86) 

Similarly, 

_ au a~ a~ a~ 
P12 = ax = P12 + €[(ax + au P12 + av P22 ) 

aCt aCt aCt 
-PH (ax + au P12 + av P22) 

a{3 a{3 a{3 2 
-P12( ax + au P12 + av P22)1 + O(€ ) (2.87) 
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Now, 

~; = :t[tl+€S(t,x,U,tl) + O(€2)] 

_ a at a 8x 2 
- at(v+€S)at+ 8x(tl+€6)8x+ O(€) 

as as as 
= [P21 + €( at + auPll + at/2dl ' 

80: 80: 80: 
[l-€(at+ 8u Pll + 8tlP2dl 

8S 8S 8S 
+[P22 + €( 8t + 8u P12 + 8tl P22 )]' 

8(3 8(3 a(3 2 
[-€(at + 8u Pll + atl P2d ] + O(€ ) 

Therefore, 
8v a6 as as 

P21 = at = P21 + €[( at + au Pll + atl P2d 

ao: ao: ao: 
-P21(- + -P11 + -P2d at au atl 

8(3 8(3 8(3 2 
-P22( at + au P11 + atl P2d] + O(€ ) (2.88) 

In a similar manner, 

8fJ a6 as a6 
P22 = ax = P22 + €[(ax + 8u P12 + atl P22 ) 

80: ao: ao: 
-P2d- + -P12 + -P22) ax au atl 

8(3 8(3 a(3 2 
-P22( ax + au P12 + atl P22)] + O(€ ) (2.89) 

Comparing Eqs.(2.81) with Eqs.(2.86) to (2.89), and equating the coeffi­
cients of €, we get the extended transformation functions or the infinites­
imals of the group, 11"11 ,11"12 ,11"21 and 11"22. These transformation functions 
can be expressed in terms of two characteristic functions, WI and W2 , by 
substituting Eqs.(2.80) into expressions for 11"11, 11"12, 11"21 and 11"22. Due to 
their complexity, we will not repeat them here. 

2.11 Dimensional and Affine Groups of Transformations 

The dimensional group of transformations r, can be subsumed in the 
general group of transformations defined by Eq.(2.1). The dimensional 
group which can be expressed as 

r: (2.90) 
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(i = 1, ...... , m) 

is associated with the concept of "dimensions". For r ~ m the parameters 
of the group r are non-essential if and only if the rank (f of the matrix 
of exponents Ir ia I (i=I, .... ,mja=I, .... ,r) is less than rjO' < r. For m < r, 
however,the parameters are always non-essential. 

For each i, the exponents "ria (a=I, .... ,r) of r are termed "dimensions". 
H ria =0 for any i, and all a, then the physical concept associated with Zi is 
said to be dimensionless with respect to r. The matrix hia 1,{i=I, .... ,mja 
=1, .... ,r) is called the dimensional matrix. 

The product 7rp , 

(2.91) 

P = I, .... , n} 

has a wide use in a number of engineering applications of dimensional anal­
ysis. 

The functions (7rp : P = 1, .... , n) defined in Eq.(2.91) are absolute 
invariants under a r-parameter dimensional group of transformations, if 
and only if the k's satisfy the system 

m 

2:)pi"Yia = 0 (a = 1, ... , r) (2.92) 
i=I 

It is interesting to note that the absolute invariant functions or products 
are non-dinlensional. 

For clarification of the above concepts, consider the problem of deflec­
tion, 6, of a structure of a given shape under dynamic loading. 6 would 
depend on the size of the structure which can be represented by a charac­
teristic length L, modulus of elasticity E, mass density Po, frequency n of 
the application of loading, amplitudes F and it of the applied forces and 
moments, respectively. The dimensional group of transformations ro can 
be written as 

ro: 8 = a~aia~6 
- 0 1 0 
L= aMaLaTL 

- 1 1 -2 F = aMaLaT F 

.. 1 2 -2 N 

M= aMaLaT M 

The dimensional matrix becomes 
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8 L E Po n F M 

aM 0 0 1 1 0 1 1 

aL 1 1 -1 -3 0 1 2 

aT 0 0 -2 0 -1 -2 -2 

Based on traditional dimensional analysis 18, the following relationship 
can be deduced: 

(2.94) 

where the quantities 

are the non-dimensional 7r terms. It can be easily verified that the 7r terms 
are absolutely invariant under the dimensional group of transformations,r o. 
For example, 

F 
= ED 

The affine group o( trnsformations can be expressed as 

(i = 1, .... m) 

(2.95) 

(2.96) 

where Ai are the parameters of the group. The affine groups are utilized 
in the Hellums-Churchill procedure discussed in chapter 3 and 4. 

The one-parameter dimensional group can be thought of as subsumed 
under the affine group,i.e., 

(2.97) 

where Ai = aU;. 

For this reason, the affine group defined in Eq.(2.96) can be considered 
somewhat more general than the one-dimensional group, Eq.{2.97). 

2.12 Summary 

In this chapter, the concepts of the continuous transformation groups 
were discussed in detail. The ideas of infinitesimal group of transformations 
and extended groups were introduced. The important concept of invariance 
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of functions and differential equations under infinitesimal groups was elab­
orated. It was also shown that invariance of differential equations under an 
infinitesimal group of transformations led to a reduction in the number of 
independent variables. The notion of characteristic function as an invariant 
surface condition was introduced in this chapter. The invariant representa­
tion expressed in terms of the characteristic functions, offers simplification 
and elegance in derivation based on the deductive methods of invariance 
analysis as will be seen in the later chapters. 
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Chapter S 

A SURVEY OF METHODS FOR DETERMINING 
SIMILARITY TRANSFORMATIONS 

3.0 Introduction 

In this chapter, different methods for determining similarity transfor­
mations of partial differential equations will be discussed. A similarity 
transformation reduces the number of independent variables in the partial 
differential equations. The transformed system of equations and auxiliary 
conditions is known as a "similarity representation". 

Direct methods of similarity analysis do not invoke invariance under 
a group of transformations. They are fairly straightforward and simple to 
apply. The separation of variables method of Abbott and Kline l, and the 
method of dimensional analysis fall into the category of direct methods. 

The group-theoretic methods on the other hand are more recent, and 
are mathematically elegant. The underlying basis in any group-theoretic 
method is that of invariance. Birkhoff2 and Morgan's3 method involves the 
use of an "assumed group of transformations" at the outset of the analysis. 
Hellums and Churchill's4 procedure is essentially sinlilar to the Birkhoff­
Morgan method, however, the use of mass, length and time as fundamental 
dimensions is implied in the procedure. Consequently a non-dimensional 
similarity representation is obtained. 

The deductive methods of similarity analysis start out with a general 
group of transformations. The equations and boundary conditions are ren­
dered invariant under the general group, and similarity solutions are subse­
quently derived on a systematic basis. Deductive group methods' are further 
classified into (a) finite group method and (b) infinitesimal group method. 
Moran and Gaggioli [, have developed a deductive procedure based on finite 
group of transformations. The infinitesimal group method of Bluman and 
Cole6 starts out with a general infinitesimal group of transformations and 
systematically deduces the similarity transformations. The characteristic­
function method of Na and Hansen 7 is, again, based upon an infinitesimal 
group of transformations. However, the introduction of the characteristic 
function renders the subsequent mathematical description in terms of a 
single dependent variable. Since the finite group is generated by the in­
finitesimal group, it is adequate to use the infinitesimal group methods for 
the systematic derivation of similarity solutions. 

3.1 Direct Methods 

(a) Separation of Variables Method of Abbott and Kline l 
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Consider the linear heat equation 

o2u ou 
oy2 = ot (3.1) 

The question we ask is whether a transformation of variables exists 
which reduces the number of independent variables in Eq.(3.1) from two 
to one? The dependent variable u would then transform to a function of a 
new independent variable ~ alone, such that u(x,t) -+ u(d where ~=dYlt). 
The resulting equation would be second-order in terms of ~. 

In the separation of variables method, the transformation is assumed 
as 

u = b'g(t)I(d (3.2) 

where ~ = ayjtmj a,b and m are constants that will be subsequently 
determined. 

By the chain rule of calculus, we can write the partial derivatives as 

ou ou o~ df a 
oy = a~ 'ay = b.g(t).~. tm (3.3) 

a2u 0 au a ou o~ cPf a2 
oy2 = oy[ayl = a~[a/ay = b.g(t}·~2·t2m (3.4) 

Similarly, 
ou dg d f ~ 
- = b'-I(d + b·g(t)·_·­
at dt ~ dt 

= b·[lf- ~g/l 
t 

(3.5) 

Substituting Eqs.(3.3} to (3.5) into Eq. (3.1), we obtain the following trans­
formed equation 

2 I' 
b {'~. = b[ '1- ~g 1 9 t2m g t (3.6) 

Dividing throughout by b·gI and rearranging, 

(3.7) 

An examination of Eq.(3.7) shows that if tI-2m =constant, that is 1-2m=O, 
then the right hand side is a function of ~ alone. . 

H the left hand side is equated to a constant ). such that g' tj g=)., then 

g(t) = gOr (3.8) 

where go is another constant. Thus the required similarity transformation 
IS 

A ay ) u = bgot I(...;t 
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which is a well-known result. 
The transformed ordinary differential equation can now be written as 

(3.10) 

(B) The Method of Dimensional Analysis 

The application of the method of dimensional analysis for finding sim­
ilarity transformations has been nicely demonstrated by Sedov8 . General­
izations to the method have been proposed by Moran {) and Morrison 10. In 
this section, we will use the dimensional analysis procedure as suggested by 
Moran and Morrisson, which we shall refer to as the "Modified Dimensional 
Analysis". 

The success of dimensional method depends on the proper identifica­
tion of the physical parameters and variables that go into the description 
of a physical problem. As an illustration, we will consider the following 
boundary value problem commonly known as the Rayleigh Flow Problem. 
An infinite plate is immersed in an incompressible fluid at rest. The plate 
is suddenly accelerated, so that it moves parallel to itself at a constant 
velocity, Uo. Let u be the fluid velocity in the x-direction, "and w the 
velocities in the y and z directions, respectively. From physical symme­
try v=w=O, and the viscous-diffusion equation describing the flow can be 
written as 

a'2u au 
11-=-ay'2 at 

where II is the kinematic viscosity, and t is the time. 
The boundary and initial conditions are: 

u(O, t) = Uo t> 0 

u(y,O) = 0 y > 0 

u(oo, t) = 0 

(3.11) 

(3.12) 

In the method of dimensional analysis used here, we will distinguish between 
lengths in different directions by assigning for each direction a separate 
dimension. By doing so, we will not lose the physical information that 
would be needed to discover the similarity transformation. The velocity in 
the x direction, u,can be expressed as 

u = !(y,II, t, Uo) (3.13) 

The "dimensional matrix" can now be written as 
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u Y t v Uo 
M 0 0 0 0 0 
Lz 1 0 0 0 1 
L" 0 1 0 2 0 
T -1 0 1 -1 -1 

a1 a2 a3 a4 as 

The rank of the matrix is 3 and the number of variables are 5. Therefore, 
the number of Pi terms are 5-3=2. 

The "dimensions" ai in the dimensional matrix are defined by the 
realtionship 

(3.14) 

where the equal sign means "dimensionally equal to". 
The dimensional matrix is equivalent to the following system of equa­

tions: 

=0 (3.15) 

Solving Eqs.(3.15}, and rewriting Eq.(3.14), 

(3.16) 

where, again, the equal sign means 'dimensionally equal to'. 
The Pi-terms are therefore 

y 
11"2 = (vt) l/Z (3.17) 

The similarity transformation can now be written as 

(3.18) 

or 
(3.19) 

As an exercise, it would be worthwhile for the reader to repeat the above 
example by using L = Lz = Ly, as is the case in "traditional" dimensional 
analysis. It will be discovered that a similarity transformation will not re­
sult. The reason lies in the fact that, physically speaking, u and Uo are 
measured in the x direction while v is defined in terms of the y direction. 
However, if the distinction between Lz and Ly is not made, some physical 
information is lost resulting in the failure of the method. We therefore rec­
ommend that such problems be analyzed by assigning separate dimensions 
to different directions, as is done in the Modified Dimensional Analysis 
proposed by Morrisson 10 and by Moran 11 • 
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3.2 Group-Theoretic Methods 

We have seen in chapter 2, that the invocation of invariance of a partial 
differential system under a group of transformations would lead to a reduc­
tion in the number of independent variables. The concept of invariance 
plays a key role in the mathematical formulation of the group-theoretic 
procedures. The main advantage of using group-theoretic procedures is 
that they are systematic. Invariance can be invoked either by using an "as­
sumed" group, or by starting out with general groups and then applying 
deductive procedures. 

(a) Birkhoff and Morgan's Method 

This method was the first application of Lie's theories of continous 
transformation groups to similarity analysis. In this method, a group of 
transformations is defined a priori, and invariance of the partial differential 
equation is then invoked. Two groups, namely the linear and the spiral, are 
used here to illustrate the Birkhoff-Morgan method. Although the choice 
of assumed groups of transformations limits the generality of the results, 
the process for obtaining similarity solutions is clearly demonstrated. Fur­
thermore, the majority of the problems of engineering interest are covered 
by the linear and spiral groups of transformations. 

Consider again, the heat equation 

subject to the auxiliary conditions 

u(y,O) =0 y>O 

u(O,t) = U(t) t> 0 

u(oo, t) = 0 

Consider the linear group of transformations: 

G: 

(3.11) 

(3.20) 

(3.21) 

where A is the parameter of transformations and Q 1, Q2 and Q3 are con­
stants which are as yet to be determined. Invariance of Eq.(3.11) under the 
above group gives: 

au a2 u 
--v-
at ay2 

Aa 3 au Aa 3 a2u 
= Aal (at) - A2U2 (v ay2) = 0 (3.22) 
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For Eq.(3.22} to be constant conform ally invariant, i.e., 

au _ II a2u = F(A)[a~ _ II a2uj 
at ay2 at ay2 

the powers of A should be the same. Therefore, 

0:3 - 0:1 = 0:3 - 20:2 

or, 

(3.23) 

(3.24) 

Thus, the conditions set forth in section 2.6 are satisfied according to Mor­
gan's theorems, and the partial differential equation can be expressed in 
terms of (m+n-l) absolute invariants. In the present example, there are 
two independent and one dependent variables, so that the heat equation 
can be expressed in terms of two absolute invariants. To find these invari­
ants, it is necessary to eliminate the parameter of transformation, A, from 
Eq.(3.21}. In other words, we are required to find the r and s such that 

and 

It can be easily seen that 

0:2 1 
r= -- =--

0:1 2 

The similarity transformation can be written as 

u 11 
if = F( tl/2) 

(3.25) 

(3.26) 

It should be ascertained whether or not the auxiliary conditions are 
invariant. under the group defined by Eq.(3.21). The auxiliary conditions 
u(y,O)=O and u(oo,t)=O combine together as one boundary condition in the 
similarity coordinate, ~, such that F(oo)=O. Using Eq.(3.26) and trans­
forming the auxiliary condition u(O,t)= U(t) to the similarity coordinate, 
we obtain the following: 

u(O} t) = t F(O) = U(t} (3.27) 

Therefore, when U( t) = Unf, where Uo = F{O), all of the auxiliary condi­
tions would be invariant under Eq.{3.21). 

If we use the following boundary condition: 

(3.28) 

then the auxiliary conditions will not be completely invariant, and a sim­
ilarity transformation will not exist. However,by using superposition of 
similarity solutions, it may be possible to obtain the required solution. 
Such methods are discussed in chapter 6 of this book. 
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The similarity representation for the heat equation for a variation of 
U( t) defined by U( t)= Uo f, is 

F" + !~ F' - SF = 0 
2 

with boundary conditions 

F(O) = Uo F(oo) = 0 

Consider now the spiral group of transformation defined by 

Under this group, the invariant heat equation which takes the form 

is constant conformally invariant under Eq.(3.30) if 

or 

The absolute invariants are 

'7=y 

where 

The boundary conditions become 

F(O) = C F(oo) = 0 

The transformed heat equation is 

vF" - f3F' = 0 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

The solution to Eq.(3.33) with boundary conditions F(O)= C and F( 00)=0 
is 

u(y,t) = C exp(f3t- {gy) (3.34) 
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From this solution it is clear that the similarity solution will exist only if 
the initial condition is 

(b) The Hellums-Churchill Procedure 

Many useful similarity solutions cannot be discovered by the use of 
traditional dimensional analysis. The use of simple affine transformations 
would give rise to new results even in the relatively well-trodden fields of 
fluid mechanics and heat transfer. Hellums-Churchill 4 proposed two exten­
sions to Birkhoff's method of search for symmetric solutions by using the 
more valuable affine group of transformations. The first extension is that 
the problem of finding the minimum parametric description can directly 
be related to the problem of finding the minimum description in terms of 
the independent variables. In other instances, a non-dimensional repre­
sentation can be obtained without achieving a reduction in the number of 
independent variables. The second extension proposed is that the method 
can be applied to yield the classes of functions which admit the possibility 
of a sinlilarity transformation. 

The Hellums-Churchill method inlplies the routine selection of mass, 
length and time as fundamental dimensions, and therefore, the method is 
suitable for physical problems. Since the transformation used is an assumed 
affine transformation group, the results while more general than those ob­
tained by traditional dimensional analysis, are still restrictive. 

We will now illustrate the use of the Hellums and Churchill procedure 
by applying it to the problem of one-dimensional heat conduction of a semi­
infinite slab 

a2 T aT 
£1--=-ay2 at (3.35) 

with the auxiliary conditions 

T(O) t) = T6 j T(oo) t) = 0 j T(y)O) = 0 (3.36) 

The method of analysis' consists of the following steps: 

(i) The variables in the problem description are rendered dimensionless, by 
introducing arbitrary reference variables. Therefore, 

- T - TA _ Y t 
T= j y=-

To Yo to 

where To) TA ) Yo and to are the arbitrary reference variables, to be deter­
mined so that a minimum parametric description would result. 
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(ii) The equations and auxiliary conditions are rendered dimensionless using 
transformations,Eq.(3.35), as follows: 

81' _ (Qi())8Z T 
8t - Yoz 8yZ 

T(O,1) = Ts;o TA 

- TA 
T(y,O) = - To 

(3.37) 

(iii) The reference varaibles are determined by obtaining a minimum para­
metric description. The problem description can be expressed as 

For minilnum parametric description, we set 

Therefore, 
Qi() = Y~ ; TA = Ts 

Therefore, the minimum description is 

(3.38) 

(3.39) 

(3.40) 

(iv) Since Yo does not appear in the original description, it can be suitably 
eliminated to give the following 

T- Ts =f(-Y ) 
Ts vat (3.41) 

Eq.(3.41) is the required similarity transformation. 
If the boundary condition at y=O is replaced by a constant heat flux 

condition, then 
a T(O, t) 

q(O, t) = qo = K 8y 

The description of the problem becomes 
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The minimum parametric description gives 

2 T. qoyo a1.o = Yo ; 0 = K ; TA = 0 (3.42) 

Therefore, the similarity transformation is given by 

K T(y, t) = g(_y_) 
qOv'at v'at 

(3.43) 

A group-theoretic viewpoint of the Hellums-Churchill procedure is dis­
cussed by Moran 11 and Seshadri 12. The use of affine groups, as is implied in 
the Hellums-Churchill method, could lead to results that are not obtainable 
by using traditional dimensional analysis. 

(c) Deductive Similarity Analysis: Moran and Gaggioli's Method 

The main drawback of methods which use an assumed group of trans­
formation at the outset of the analysis is that the resulting solutions are 
restrictive. Therefore, if an invariant solution cannot be discovered, one 
should not conclude that similarity solutions do not exist. Recourse to de­
ductive methods of analysis using general groups of transformations could 
systematically lead to a number of similarity solutions. 

Consider again the heat equation given in Eq.(3.11). Instead of pro­
ceeding with an assumed group of transformations as was done in the earlier 
sections, a general one-parameter finite group of transformations is intro­
duced as follows: 

G: y=f'(y,tja) 

t= l(y, tj a) 

ft = r(u; a) 

(3.44) 

The group G can be enlarged using the chain rule of differentiation as 
follows: 

8u _ (8u 8t) 8u 
8t - 8u8! at 

+(Bu 8y) 8u 
au 8t 8y 

82u [aU(aY)2] 82u (8u a2t) 8u 
8y2 = au ay 8y2 + au 8y2 at 

+(au82y )8u + [8u(~)2]82U 
8u8y2 8y 8u 8y 8(2 

+2(8u 8y 8t) 82u + [82u (8 Y)2](8u)2 
8u 8y 8y 8y8t 8u2 8y 8y 
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+[82,\ 8~)2](8u)2 
8u2 8y 8t 

82ii, 8t 8y 8u8u 
+2(8u2 8y 8Y) at 8y (3.46) 

The first condition to be satisfied by the general one-parameter trans­
formation group is the requirement that the given partial differential equa­
tion, Eq.{3.1), be conform ally invariant. According to Morgan's theorem, 
the conformal invariance of Eq.{3.1) requires that the following equation be 
satisfied: 

an a2n 
8t - v ay2 

8u [au 82u 
=F(tJy,u, at"""; a) at -vay2 ] 

Substitution of Eqs.{3.45) and (3.46) into Eq.(3.47) gives: 

where 

[au (a~ _ v 82t)] au _ v[8u (a Y)2] 82 u + R 
8u 8t 8y2 8t 8u 8y 8y2 

= F[8u _ v 82u] 
8t 8y2 

R= [8u(8~ _v82y)]8u _v[8U(~)2]a2u 
8u 8t 8y2 ay 8u 8y 8tz 

( 8u ay 8t) 82u [82ii, (8t)2] (8U)2 
-2v 8u 8y 8y ay8t - v 8u2 8y 8t 

_v[82 u (8~)2] (8U)2 
au2 ay ay 

-2v [a2u 8t ay] 8u au 
8u2 8y 8y 8t 8y 

(3.47) 

(3.48) 

It is seen that conformal invariance will result if, simultaneously, R=O and 

(3.49) 

For R to vanish, it is sufficient that the coefficients of the derivatives 

identically vanish, as follows: 
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Now,since the derivatives 

ail (at )2::0 
au ay 

ail (a y at)::o 
au ayay 

a2il(at)2::0 
au2 ay 

a2il(aY)2::0 
au2 ay 

a2il(~ay)::0 
au2 ayay 

ail ay at ay and at 
au' ay , at' ay at 

do not vanish, Eq.(3.50) is satisfied if 

82 u 
-::0 
8u2 

Eq.(3.52) indicates that Eq.(3.49) can be simplified to 

at = (a Y)2 
at ay 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

Multiplying Eq.(3.51) by 2(ay/ay) and making use of Eq.(3.54)' we get: 

(3.55) 

The second term is seen to be zero from Eq.(3.52). Since ay/ay is not zero, 
Eq.(3.55) indicates that: 

ay 
at = 0 (3.56) 

Eq.(3.51} therefore becomes 

(3.57) 
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Eqs.(3.56) and (3.57) show that 

Y = Kda)y + K2(a) 

or, 
(3.58) 

Substituting y from Eq.(3.58) into Eq.(3.54) and integrating, the fol­
lowing relation between t and t is obtained: 

(3.59) 

Eq.(3.53) yields 
(3.60) 

Thus, the diffusion equation, Eq.(3.1), is conformally invariant under 
the group of transformations, 

G: y = r(Yj a) = cda)y + c2(a) 

t = f(tj a) = [cda)]2t+ c3(a) 

ii. = fv(u; a) = c4(a)u+ cs(a) (3.61) 

Based on Morgan's theorem, if a given partial differential equation 
transforms conformally under a group of transformations, then it can be 
expressed in terms of the functionally independent invariants of this group. 
Before the invariants are found, however, additional restrictions will be 
placed on the function f, by the requirement that each of the auxiliary con­
ditions (i.e., the boundary connitions and the initial conditions) be satisfied 
by solutions invariant under the transformation group G. 

Let us denote an invariant solution by I(zl, ?),i.e.,for all values of the 
group parameter a, 

Iv (u; a) = I[!,,(y; a),p (t; a)] 

Since this is an invariant solution, it can be written as 

u = I(y, t) 

For group G, defined in Eq.(3.61)' Eq.(3.62) gives 

C4( a)u + cs( a) 

= I[cda}y+ c2(a),(cda))2t+ c3(a)] 

(3.62) 

(3.63) 

(3.64) 

Specializing the group to account for the auxiliary conditions as stated in 
Eq.(3.12), we get: 
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I[C2( a), c~( a)t+ C3( a)1 = C4 (a) Uo + C5( a) 

Ijoo, cf( a)t + C3( all = C5( a) (3.65) 

After considerable algebraic manipulations, the following can be found 
to hold: 

c2(a) = 0 

c3(a) = 0 

c4(a) = 1 

c5(a) = 0 

Thus, to satisfy Morgan's sufficient condition for the existence of a sim­
ilarity transformation of the partial differential equation, and to satisfy the 
necessary condition imposed by the auxiliary conditions, a transformation 
group must be of the form: 

G: y = f'(Yi a) = cda)y 

t = f(t; a) = [cdaWt 

u=J,,(u;a) = u (3.66) 

The two absolute invariants required can be established by Eq.(2.20), 
with 

du 
(3.67) 

where the subscript a in Eq.(3.67) represents partial differentiation with 
respect to a. Eq.{3.(7) can also be written as 

dy dt du 
c~(a)y - 2cda)c{{a)t = 0 

The absolute invariants are therefore: 

Y u 
'7 = IT:":'X and F('7) = -u, 

2y (vt) 0 

and the differential equation and its auxiliary conditions then become: 

with the boundary conditions: 

F(oo) = 0 F(O) = 1 

The deductive group method of Gaggioli and Moran (1966) can. therefore 
be seen to be very general. No specific form of the transformation group 
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is assumed at the outset. Conformal invariance of the given partial differ­
ential equation under the group determines the transformation functions. 
The absolute invariants are then found, by a proper imposition of the aux­
iliary conditions. Thus, the trial and error nature of Birkhoff and Morgan's 
method is overcome. 

Another approach was proposed by Moran and Gaggioli (1968a), in 
which the class of transformation groups introduced is of a somewhat more 
special, though still rather general form. Instead of introducing a very 
general class of groups, as in Eq.(3.44), a relatively special form, such as: 

y = c"(a)y + K" 

t = ct(a)t+ K" 

u= ctL(a)u+KtL 

is introduced in place of Eq.(3.44). However, the other steps remain un­
changed. This method was extended for the multi-parameter groups and 
was successfully applied to the similarity solutions of three-dimensional 
boundary layer equations ( Moran,Gaggioli and Scholten 13) and the com­
pressible boundary layer equations (Gaggioli and Moran 14). 

Other deductive group methods based on finite groups are discussed 
in detail by Ames15 • 

(d) Infinitesimal Group Method (BIuman and Cole) 

The deductive group method of BIuman and Cole6 starts out with a 
general infinitesimal group of transformations. By invocation of invariance 
under the infinitesimal group the "determining equations" are derived. The 
determining equations are a set of linear differential equations, the solution 
of which gives the transformation function or the infinitesimals of the de­
pendent and independent variables. 

The heat equation IJ,,,,, - Ut = 0 is invariant under an infinitesimal 
group of transformations: 

if and only if 

y = y + € Y (y, t, IJ,) + O( €2) 

t= t+€T(y,t,u) + O(€2) 

(3.68) 

For a boundary value problem, the boundary conditions would also be in­
variant. U, Y and T are the infinitesimals of the group of transformations. 
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As we have seen in section 2.9, the solution of the invariant surface 
equation 

au au 
U(y, t, u) = Y(y, t, u) ax + T(y, t, u) at (3.69) 

is the similarity solution. Bluman and Cole's technique differs from the 
method used by N a and Hansen in that the invariant surface is not identified 
with the characteristic function. Subsequently, the determining equations 
are expressed in terms of X, T and U, and their derivatives. 

In order to evaluate the derivatives, we need the following transforma­
tions as has been shown in section 2.9: 

Similarly, 

a y = ~ [ii _ € Y + O(€2)] 
ay ay' 

= 1 _ €[a yay + a Y au aXj + O(€2) 
ayay auaxax 

= 1 - € [ 1':" + YtL uz ] + O( €2) 

~~ = -€[Y t + YtLUt] + O(€2) 

:~ = 1- €[ Tt + Ttl utl + O(€2) 

at 
ay = -€ [T" + Ttl uz ] + O(€2) 

If we recall that u = u + € U + O(€2), 

au au a'Y au at -=_-..!...+--
ay ayay at ay 

Substituting Eq.(3.70) into Eq.(3.71), we get 

Similarly, 

au 
ay = u" + €[u" + (UtL - Y")u,, - T"Ut 

-2 Ttl U" uyt - (3YtL +2T"tL)u"ut - TtLUtUt 

+(UtLtL - 2YtL")u"u,, - 2T"Ut" 

+(UtL - 21':" - T",,)Ut + (2UYtL - 1':",,)uy 

(3.70a) 

(3.70b) 

(3.70c) 

(3.70d) 

(3.71) 

(3.72) 

+ U",,] + O(€2) (3.73) 
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substituting Uyy = Ut, and equating to zero the coefficients of 

and U and the remaining terms in the expression of 

the determining equations can be obtained as follows: 

Tu = 0 

Yu = 0 

Uuu = 0 

Therefore, solving Eq.(3.75a to d) we have 

U(y, t, u) = I(y, t)u + g(y, t) 

Y(y, t, u) = Y(y, t) 

T(y, t, u) = T(y, t) 

The remainder of the determining equations are 

Uty: Ty=O or T=T(t) 

Ut 2 1'.". - T' (t) = 0 

u" Yt - y:"" + 21" = 0 

u : Iyy - It = 0 

uO : g"" - gt = 0 

(3.75a) 

(3.75b) 

(3.75c) 

(3.76) 

(3.77a) 

(3.77b) 

(3.77c) 

(3.77 d) 

(3.77e) 

We will consider the subgroup for which g(y, t) = O. Solving Eq.(3.77b} for 
y, we have 

Y = yT'(t) + A(t) 
2 

(3.78) 

where A(t) is arbitrary. Substituting Eq.(3.78) into Eq.(3.77c) and then 
solving for I, we obtain 

1= - y2 Til (t) _ yA' (t) + B( t) 
8 2 

(3.79) 

where B( t) is arbitrary. 
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Substituting Eq.{3.79) into Eq.{3.77d), we have 

T" (t) yZ Till (t) yA" (t) 
- -- + + -' - - B' (t) = 0 

4 8 2 

Solving Eq.(3.80), we can obtain the infinitesimals U, Y and T as: 

Y = C4 + 2Cl t+ csy + 4czyt 

T = C6 + 2cst+ 4czP 
U = -[2czt+ C3 + CIY + CZyZju 

(3.80) 

Cl, Cz, C3, C4, Cs and C6 are six arbitrary parameters. All the parameters 
excepting Cz, individually represent transformations that can be obtained 
by inspectional procedures. C4 represents translation invariance in y, C6 

translation in t, Cl represents invariance under a Galilean transformation, 
and Cs represents similitudinous invariance. 

Similarity solution can now be derived by solving the invariant surface 
equation,Eq.(3.69), as 

du dy dt 
~~--~= ~~--~= ~~--~ 
U(y, t, u) Y(y, t, u) T(y, t, u) 

Specific similarity solutions are condidered in the next section. 

(e) The Characteristic Function method (Na and Hansen) 

The deductive group methods of N a and Hansen (7) and that of BIuman 
and Cole (6 ) are both based upon the invocation of invariance of the par­
tial differential equations under an infinitesimal group of transformations. 
While Bluman and Cole determine the infinitesimals directly by solving 
the determining equations, N a and Hansen express the infinitesimals of the 
group in terms of a single function, W, called the "characteristic function". 
The procedure for finding the infinitesimals then reduces to the determina­
tion of the characteristic function. The latter procedure is convenient and 
more systematic, as will now be demonstrated by the analysis of the heat 
equation. 

Using the notation 

au au a2u 
PI = at ' P2 = a y , Pll = a t;2 

a2 u a2 u 
P22 = ay2 and P12 = -­atay 

the heat equation can be written as: 

PI - P22 = 0 
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We now define an infinitesimal group of transformations as follows: 

t= t+€e(t,y,u) + 0(€2) 

Y = y + €'7( t, y, IL) + 0(€2) 

U = U + Edt, y, IL) + 0((2) 

PI = Pl +€1I"dt,y,u,Pl,P2) + 0(€2) 

P2 = P2 + €1I"2(t, y, IL,Pl,P2) + 0((2) 

PZ2 = P22 + €1I"22(t,y,U,Pl,P2,PU,P12,P22) + 0((2) 

(3.82) 

where the transformation functions,e, '7, ~, 11" 1,11"2 and 11"22, can be expressed 
in terms of the characteristic function, W, as: 

aw 
'7 = ap2 

aw aw 
~ = Pl- + P2- - W 

apl ap2 

8W 8W 
11"1 = -- - Pl-'-

at au 
aw aw 

11"2 = ---P2-
ay aIL 

8 2 W 82 W a2 W 
-11"22 = -a " + 2P2-a a + P2 2-a 2 y- Y u U 

82 W 82 W 
+2P12( -8 8 + P2 8 ··!l ) 

Y PI uuPI 

8 2 W 82 W 
+2pn( -8 8 + P2 8 ··!l ) 

Y P2 UUP2 

a2 W a2 W 
+P122-a 2 + 2P12P22 a 8 

PI PI P2 

2a2 W a W 
+P22 -a 2 + P22-a P2 u 

The characteristic function, W, is a function of t,y,U,Pl and P2. 

(3.83) 

Under the infinitesimal group of transformations, a partial differential 
equation /=0 will be invariant if U/=O, i.e., 

(3.84) 
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or,writing the operation in its expanded form, 

~~ +'1 8() +~~ +11"1~ 
8t 8y au ap1 

a( ) a( ) a( ) 
+11"2- + 11"11-- +11"12--

8P2 apll ap12 

a( ) 
+11"22-- =0 

ap22 
(3.85) 

where the parenthesis represents the quantity P1 - P22. Eq.(3.85) gives: 

11"1 - 11"22 = 0 (3.86) 

which, upon substitution from Eq.(3.83)' becomes: 

aw aw a2 w a2 w 
---P1-+--+ 2P2--

at au ay2 ayau 

a2 W a2 W 82 W 
+P22-a 2 + 2P12 a-a + 2P12P2 a .. !l u y P1 u.uP1 

a2 W a2 w a2 W 
+2P1-a a + P1P2 a ··!l + P12 2-a 2 

y P2 u.u P2 PI 

a2 W a2 W a W 
+2P12P1 a a + P1 2-a 2 + Pl-a = 0 (3.87) 

P1 P2 Pl u 

Eq.(3.87) is used to solve for the characteristic function,W(t,y,u,p 1,P2). 

Since W is not a function of Pl2, the coefficients of the terms involving 
Pl2 and Pl2 2 should be zero. By putting the coefficients of P12 2 to zero, 
the characteristic function W is seen to be a linear function of p,i.e., 

W = Wdt,y,u,P2) + Pl W2(t,y,u,P2) (3.88) 

The coefficients of terms involving Pl2 then gives: 

a W2 aW2 a W2 -- + P2 -- + Pl-- = 0 
ay au ap2 

(3.89) 

Since W2 is not a function of Pl! the coefficients of Pl in Eq.(3.89) must be 
zero, which shows that W2 is independent of P2,i.e., 

W2 = W2(t,u,y) 

The remaining two terms in Eq.(3.89) then lead to the conclusion that W2 

is independent of both y and u and, as a result, the characteristic function 
now takes the form 

W = Wdt,y,u,P2) + Pl W2(t) 
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Putting this form of W into Eq.(3.87) and noting that both WI and W2 
are independent of PI, Eq.(3.87) can be separated into three equations, 
corresponding to the coefficients of P~ ,P~ and PI. We then get 

From Eq.(3.90c}, 

Po . 
I . 

o WI 02 Wl 02 Wl 

-7ft + 0'12 + 2P2 oyou 

02 WI 
+p~-- =0 ou2 

a W2 02 WI a2 Wl 

-Tt + 2 ayap2 + P2 auap2 = 0 

Putting this form of WI into Eq.(3.90b), we get: 

dW2 a Wl2 a W2 
--+2--+ P2-- =0 

dt ay au 

(3.90a, h, c) 

(3.91) 

Both W2 and Wl2 are independent of P2, the coefficient of P2 in the third 
term should be zero, which means Wl2 is independent of u. Eq.(3.91) then 
becomes: 

dW2 0 Wl2 
--+2--=0 

dt ay 
(3.92) 

Since W2 is a function of t only, Eq.(3.92) shows that WI2 depends linearly 
on 'I, i.e., 

Eq.(3.92) then becomes 

W12 = W121 (t) + W122 (t)y 

dW2 --- + 2W122 = 0 
dt 

(3.93) 

We will make use of this equation later. The characteristic function now 
becomes: 

w = Wu (t, 'I, u) + [ Wl2d t} + Wl22 (t) yjP2 

+ Wz(t)PI 

Putting into Eq.(3.90a} the new form of Wand setting to zero terms with 
different powers of P2, three equations are obtained: 

(3.94a) 
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d W121 d W122 82 Wu 
------y+2--=0 

dt dt 8y8u 
(3.94b) 

(3.94c) 

Eq.(3.94c) shows that 

Eq.(3.94b) then gives: 

_ dW121 _ dW122 y+ 28 W1l2 = 0 
dt dt 8y 

(3.95) 

Therefore, W1l2 can be written as: 

Eq.(3.95) becomes: 

dW121 dW122 
-~ - ~y + 2 W1l22 + 4y W1l23 = 0 (3.96) 

Since all the W's in Eq.(3.96) are independent of y, we get: 

dW121 
-~+2W1l22 =0 

dW122 
-~+4W1123 =0 

Putting W11 into Eq.(3.94a)' we get: 

( 8 Wll1 8 2 W111) (dW1121 W ) - -- + - - 2 1123 U 
8t 8y2 dt 

d W1l22 d W1l23 2 
---yu- Y u=O 

dt dt 

(3.97a) 

(3.97b) 

(3.98) 

Since Wll1 is a function of t and y only and WU21 , W1122 and W1l23 are 
functions of t only, the coefficients of uo, u, yu, and y2 u in Eq.(3.94b) 
should all be zero, which then gives 

W1122 = Cl j W1123 = C2 j W1l21 = 2C2t+ C3 

and 
_8_W_ll_l _ 82 Wll1 = 0 

8t 8y2 
(3.99) 
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From Eqs.(3.97a) and (3.97b), we get: 

Also,from Eq.(3.93), 

The final form of the characteristic function is therefore 

+(2C2t+ C3 + CIY+ c2y2)u 

+[2clt+ C4 + (4c2t+ cslYjP2 

+(4C2r + 2cst+ C6)Pl 

where Wlll (t, y) is any function satisfying the equation 

a_W_ll_l _ a2 Wlll = 0 
at 8y2 

(3.100) 

(3.101) 

We now conclude that the heat equation will be invariant under an in­
finitesimal group of transformations, if the characteristic function, W,is of 
the form, Eq.(3.101). Therefore, it should now be possible to reduce the 
number of independent variables by one. 

Similarity transformations can be obtained by solving the subsystem 

dt dy du 
-=-=-
~ '1 ~ 

e,'1 and ~ can be obtained from Eq.(3.83) and Eq.(3.101) as: 

dt 

dy = --------~----~ 
2c1 t+ C4 + (4c2t+ cs)y 

du 
= ~=-~~--~------------~~ - Wlldt, y) - (2c2t+ C3 + C1Y + c2y2)u 

We will consider a few special cases: 

CASE 1: 
Wlll(t,y) = Cl = C2 = C4 = C6 = 0 

(Linear Group of Transformations) 
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Eq.(3.103) becomes 
dt dy du 

(3.104) -=-=--
2cst csy -C3 U 

The two independent solutions to Eq.(3.104) are 

y u 
. r;. = constant and - = constant 
v t ~ 

where a = -cs/(2cs). The similarity transformation can now be written 
as y u 

'1 = - and f( '1) = -Vi ~ 
(3.105) 

The diffusion equation can be transformed into an ordinary differential 
equation 

I' = af- ~'11 
2 

(3.106) 

These results are the same as those obtained by the Birkhoff-Morgan 
approach, Eq.(3.26), and the separation of variables method, Eq.(3.9). The 
deductive group approach systematically gives rise to a number of solutions, 
some of which cannot be discovered by inspectional group procedures. 

CASE 2: 
W1l1 (t,y) = C1 = C2 = C4 = Cs = 0 

For this group, Eq.(3.103) becomes 

dt = dy = ~ 
CG 0 -C3U 

Following the same approach as in case 1, the similarity variables are found 
to be 

u 
'1 = Y and f( '1) = (f3 ) exp t 

where f3 = -c31 CG. The diffusion equation is transformed to: 

I' - f3f= 0 

which is seen to be spiral group. 

CASE 3: 
W1l1 (t, y) = C1 = C3 = C4 = Cs = CG = 0 

For this group, Eq.(3.103) becomes: 

dt dy du 
4t2 = 4ty = -(2t + y2)u 
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Now,the first two terms give 

(3.110) 

where kl is a constant. Next, substituting t = kl Y from Eq.(3.110) into the 
second and third terms in Eq.(3.109), we get: 

which, upon integration, gives 

uyl/2 exp( L) = constant 
4kl 

Using kl from Eq.(3.110), it becomes: 

The similarity variables and the diffusion equation are therefore: 

CASE 4: 

Wlll(t,y) = ao + alt+ ~aly2 
Cl = C2 =- Cs = C4 = Ca = 0 

(3.111) 

(3.112) 

It can be shown that this special form of WU1 satisfies Eq.(3.99). For 
this group, Eq.(3.103) becomes 

(3.113) 

from which 

and the diffusion equation becomes: 

I' + ~'7/- ~ = 0 
2 2cs 

(3.114) 
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More solutions to the heat equation are available in the works of N a 
and Hansen 7 and BIuman and Cole6 • As pointed out earlier in this section, 
the underlying basis of the infinitesimal group method of BIuman-Cole and 
the characteristic function method of Na-Hansen is the same. The latter 
method expresses the infinitesimals or the transformation function in terms 
of a single function, W, which is the characteristic function. Also,since the 
finite group of transformations is generated by the infinitesimal group, we 
will maiIlly utilize the characteristic function method of N a and Hansen to 
find general similarity solutions wherever the deductive procedure is applied 
to partial differential models in the remainder of the book. 

3.3 Summary 

The methods for obtaining similarity transformation were classified 
into (a) direct methods and (b) group- theoretic methods. The direct 
methods such as separation of variables and dimensional analysis do not 
invoke group invariance. They are fairly straightforward and simple to ap­
ply. Group-theoretic methods on the other hand are mathematically more 
elegant, and the important concept of invariance under a group of transfor­
mations is always invoked. Again,in some group-theoretic procedures such 
as the Birkhoff-Morgan method and the Hellums-Churchill method the spe­
cific form of the group is assumed a priori. On the other hand,procedures 
such as the finite group method of Moran-Gaggioli, and the infinitesimal 
group methods of BIuman-Cole and Na-Hansen are deductive. In these 
procedures, a general group of transformations is defined and similarity 
solutions are systematically deduced. 
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Chapter ( 

APPLICATION OF SIMnARITY ANALYSIS TO PROBLEMS 
IN SCIENCE AND ENGINEERING 

4.0 Introduction 

Different methods for carrying out similarity analysis of partial differ­
ential equations were discussed in Chapter 3 with particular reference to 
the linear heat equation. The methods were classified into (1) direct meth­
ods and (2) group-theoretic methods. In the direct methods, the concept 
of group invariance is not explicitly invoked. They are straightforward and 
simple to apply. Since the direct methods are based on assumed transfor­
mations, the resulting solutions are restrictive. The group-theoretic meth­
ods on the other hand are based upon the invocation of invariance under 
groups of transformations of the partial differential equations and the auxil­
iary conditions. Group-theoretic methods such as Birkhoff-Morgan method 
and the Hellums-Churchill procedure start out by assuming a specific form 
of the group. Therefore, the resulting similarity solutions are restrictive. 
The simplicity of these methods is on account of the fact that only alge­
braic equations (resulting from invocation of invariance) need to be solved. 
On the other hand, deductive group procedures while being systematic and 
more rigorous and tedious. 

In this chapter, we will apply these methods of similarity analysis to a 
variety of problems found in engineering science. 

4.1 Laminar Two Dimensional Jet: Separation of Variables Method 

The separation of variables method of Abbott and Kline l is applied 
to the problem of a steady two-dimensional incompressible laminar flow of 
fluid into an infinite region of the same fluid. 

The equations of motion can be written as: 

au au a2 u 
u-+v-=v-ax ay ay2 

au av 
-+-=0 ax ay 

(4.1) 

(4.2) 

u and tI are components of velocity in the x and y directions. v is the 
kinematic viscosity. 
The boundary conditions are: 

y=O: v=O 

y = 00 : 

62 

au 
-=0 ay 

u=O 

(4.3a) 

(4.3b) 



www.manaraa.com

The total momentum flux across a section of the jet at any given value of 
x is constant. 

2p 1000 'tJ.2 dy = constant 

p is the mass density of the fluid. 
Introducing a stream function,,p,such that 

a,p a,p 
u=-' v=--ay , ax 

Eq.{4.2) is satisfied identically and Eq.{4.1) becomes 

a,p a2 ,p a,p a2,p a3,p ------=v-ayaxay ax ay2 ay3 

H we assume a transformation as follows: 

,p(x, y) = b g(x) I(~) 
ay 

where ~ =-
"({x) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where a and b are constants; g(x) and "((x) are unknown functions, then 
Eq.(4.6) can be transformed into 

(4.8) 

The boundary conditions in the transformed coordinates then become: 

~ = 0 : bg'I(O) = 0 

~ = 0 : ba2 g2 / ' (0) = 0 
"( 

~-+O : bail(oo) = 0 
"( 

(4.9) 

For Eq.(4.8) to be reducible to an ordinary differential equation, we set 

, 
"(g = constant = Cl 

A second relation between "( and g can be found by using Eq.(~.4), 
which can be written as 

(4.4a) 

We have 

u = a,p = abil and dy = '1.~ 
ay "( a 
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Therefore, Eq.(4.4a) becomes 

or 
g2 
- = C3 = constant 
"1 

Solving for g and "1 from the relationships 

we have 
g(x} = [3C IC3(X+ Xo}]1/3 

"1(x) = ~[3CIC3(X + Xo}]2/3 
C3 

where Xo is a constant of integration. 
It can now be seen that "1' gin Eq.(4.8) is also a constant. 
If Cl and C3 are chosen as 

..;va 1 
Cl = -b- and C3 = "3' 

Eq.(4.8} can be rewritten as 

til + 1/' + (/)2 = 0 

with boundary conditions 

1(0) = 0 1(0) = 0 1(00) = 0 

and the similarity variable 

(4.10a) 

(4.lOb) 

(4.11) 

where k is a constant. The solution to the above equations have been 
reported in closed form 2 • 

4.2 Impact of Rods With Nonlinear Material Properties: Separation of 
Variables Method 

We now consider the problem of impact of thin long rods which exhibit 
nonlinear viscous and elastic behavior. The method of separation of vari­
ables is used to obtain the required similarity transformations for a system 
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of partial differential equations 3 • The equations of motion for longitudinal 
deformation of a uniaxial rod are 

aa av 
-=p­ax at 

au 
v=-at 

au 
e=-ax 

ae = ~(~)q + (~)It at at p- ), 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 

where a is the normal stress along the axis of the rodj v is the component 
of the velocity along the axisje is the strainjx is the space coordinate and t 
is the time. The material constants are q, n,p- and ).. 

Eq.(4.12a) is the equilibrium equation,Eq.(4.12c) is the strain displace­
ment relation, and Eq.(4.12d) is the constitutive relationship. When ).-+00 
,the stress-strain behavior for the nonlinear elastic material is obtained. 
IT p--+oo,however,the nonlinear viscous behavior would result. Materials 
that exhibit the relationship as described in Eq.(4.12d) are called Maxwell 
solids. 

The stress, displacement and velocity is assumed to be as follows: 

a(x, t) = S(t)F(s-) 

u( x, t) = U( t) G(d 

v(x, t) = V(t)H(s-) 

where the similarity variable is defined as 

( 4.13) 

For nonlinear elastic materials, the governing differential equations are hy­
perbolic. For viscous materials, the equations are parabolic. 

Substituting Eq.(4.13) into Eq.(4.12), we obtain the following: 

H= f3G-/~c' 

II' = -q-(aFq _/~Fq-1F') 
1 + w • 

W Fit +--
1+ W 
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where 
us' U' 

a = VS f3 = V 
UX' pXV' 

"1= VX 0 = -S-

1 X(S)1l W X(S)n 
l+w=U;' ; l+w=vI (4.15) 

Primes denote differentiation with respect to the argument. 
H similarity solutions are to exist, then a, (3,"f,0 and w must repre­

sent constant quantities. That is, time must not explicit.ly appear in the 
differential equations (4.14). 

One set of solutions leading to problems of practical interest is given 
by 

S(t) = Af U(t) = Bt 
X(t) = 0(1 (4.16) V(t) = Df 

Substituting Eq.(4.16) into Eq.(4.12), 
obtained: 

the following relationships can be 

pOD 
-=1 

A 
B=D 

O(A)Il __ 1_ 
Bit -1+w 

O(A)n w 
D I = l+w 

f3-0=1 

"1- 0 + aq = 1 

"1- 6 + an = 0 

(4.17) 

The constants a,{3,"1 and 6 can be determined for the constitutive model 
and the particular boundary conditions. 

Two distinct types of boundary conditions are considered; the first is 
the application of velocity impact 

( t)6 v(O,t) = vo -
f() 

and the other is the application of stress impact 

where (10, Vo and f() are reference quantities. 

(4.18a) 

(4.18b) 

For the Maxwell solid (.>. and It are finite), the solution for Eq.(4.17) is 

1 
a= -­

q-n 
l+q 

(3 = 1 + 2( q _ n) 
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l-q ')' = 1 + --;----"'"7 
2( q - n) 

6 = 1+ q 
2(q - n) 

(4.19) 

For the elastic material, .A-oo which implies that w-O. For an applied 
velocity at the end of the elastic rod, 

26 
Q=--

1+ q 

where 6 is defined in Eq.(4.18a). 

l-q 
')' = 1 + (-1 -)6 , 

+q 

For the applied stress problem, we express ')' and 6 in terms of Q, as 
follows: 

Q 

')' = 1 + 2(1- q) 
Q 

6 = -(1- q) 
2 

For the applied velocity problem, 

Therefore, 

v(O, t) = Df H(O) = Vo ( ~)6 
to 

D = vo, and H(O) = 1 
t.l 

(4.20) 

Using Eqs.(4.13),(4.16),(4.17) and (4.20),the following expressions can 
be obtained: 

Starting with the relationship X( t) = 0(1, 0 and 1 can be determined. 
Then, the similarity variable ~ can be written as 

where 
X( t) = (t:) q/(1+q) Vo ~to( ~) l+/ip 

P to 
with s = (1- q)/(1 + q). 

Eqs.(4.14) uncouple and a single ordinary differential equation can be 
obtained as 

~(d)(l-q)/q d' = 12~2d' 
q 

+1(, + 1- 2(3)~G' + (3((3 - 1)G (4.22) 

At ~ = 0, H(O) = 1, which according to Eq.(4.14b) transforms to G(O) = 
1/(1 + 6). 

At the wavefront, ~ equals to ~w, the continuity of the rod must 
be preserved. This implies zero displacement immediately ahead of the 
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wavefront,i.e., G(~ w) = O. A technique for determining the numerical value 
of ~w is discussed in chapter 8. 

For a finite impulse and displacement at the origin, both a: and 6 are 
greater than -1. For a linear elastic material, q=l, ~w = 1. 

(4.23) 

A sinlilar procedure can be followed for the stress problem. Other solutions 
to the impact problem are given in references (3) and (4). 

4.3 Diffusion of Vorticity From a Line Vortex hnmersed in a Quiescent 
Fluid : Dimensional Method 

The equation for the diffusion of a vorticity in a fluid is given by: 

v(a2W + ~ aw) = aw 
a~ r ar at 

(4.24) 

where w is the vorticity, r is the radius about the origin, v is the kinematic 
viscosity and t is time. The circulatioll of flow ,r 0, is assumed to be constant 
as the radius of the circular cylinder of radius ,ro, rotating in the fluid 
approaches zero. 

ro = l' 121r wrdrde ( 4.25) 

The line vortex is assumed to be suddenly introduced into a fluid at rest. 
At large times, the entire body of the fluid would rotate as a vortex with a 
circumferential velocity 

ro 
vo=-

211"r 

Eq.(4.25) can now be rewritten by letting n = w/ro as follows: 

{r {27r 
10 10 nrdrde = 1 

(4.26) 

(4.27) 

The vorticity of the fluid at rest is zero, and the vorticity at any point 
(excluding the origin) would vanish at large times. The problem of interest 
here is to determine the variation of vorticity and flow velocity at any time 
t. 

From Eqs.(4.24) and (4.25) it is clear that 

w = f(r, t,ro,v) 

or 
n = F(r, t,lI) (4.28) 
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The dimensional matrix for the relationship 

can be written as follows: 

al lt2 a3 a4 

0 r t v 
M 0 0 0 0 

Lr -2 1 0 2 

T 0 0 1 1 

The number of variables is 4, and the rank of the dimensional matrix is 
equal to 2. Therefore, the two Pi terms can be written as 

r 
11'1=-

JVt 
The similarity transformation can be expressed as: 

or 
1 

O(r, t) = -[¢(~)l vt 

where ~= ,:;. /(vt). 

(4.29) 

The resulting ordinary differential equation can be obtained by substi­
tuting Eq.(4.29) into Eq.(4.24) using the relationship, w = roo, as 

4~¢" + 4¢/ + (¢ + ~l) = 0 (4.30) 

Integrating once, 
4~¢' + ~¢ = C1 

Since ¢ and ¢' are finite for any given time, and therefore any ~, then as 
~-O, C1 = O. Integrating again, 

( 4.31) 

Using the boundary condition, Eq.(4.27)' 
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When r-oo,C2 = 1/(411"), therefore the required similarity solution is given 
by 

ro 2 w(r,t) = -exp(-r/4I1t) 
411"IIt 

4.4 Laminar Boundary Layer Equation : Dimensional Method 

(4.32) 

Consider the problem of an incompressible boundary layer How, on a 
Hat plate with a uniform free stream Uo. The How is governed by the 
continuity equation 

and the momentum equation 

au av 
-+-=0 ax ay 

The boundary conditions can be written as: 

y=o: u=v=O y-oo : u-Uo 

We can assume the dimensional relationship as 

u= U(X,y,II,UO) v = v(x, y,lI, Uo) 

(4.33a) 

(4.33b) 

(4.34) 

Traditional dimensional analysis in which no distinction is made between 
the x and y directions of the length gives the following relationship : 

(4.35) 

Eq.(4.35) is not a similarity transformation. However, assigning separate 
dimensions to the x and y length directions, the dimensional matrix for the 
relationship . 

U"l x"':l ya3 11 "4 Uo as = Af! Lx 0 L" ° TO 

can be written as 

a1 a., a3 a4 a5 
u x y 11 Uo 

M 0 0 0 0 0 

Lx 1 1 0 0 1 

L" 0 0 1 2 0 

T -1 0 0 -1 -1 
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where the equal sign means "dimensionally equal to". The rank and the 
number of pi terms in the dimensional matrix are 3 and 2, respectively. 

The Pi terms are 

_ (UO)1/2 
11"2 - 11 -

IIX 

Therefore, the similarity transformation is 

Similarly, 

( X )1/2 [ (UO)1/2] v-- =g2Y-
II Uo IIX 

(4.36) 

4.5 Free Convection from a Vertical Needle:Hellums and Churchill Method 

Consider a vertical solid axisymmetrical body of radius,R(x),whose 
surface temperature or local heat flux may vary vertically as shown in 
Fig.4.1. It is assumed in the formulation of this problem that the tempera­
ture increase is slight. Furthermore, the Prandtl's boundary layer approx­
imation is made. The body is also assumed to be thin so that the square 
of its slope [R' (x) 2] is negligible. This last approximation facilitates a wide 
class of self-similar solutions. 

Fig.4.1 Free Convection From a Thin 
Vertical Needle 

The governing differential equations ares 

[(R + y)u]", + [(R + y)v]y = 0 
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1/ 
UUz + VU y = -R [(R + y)uyl + gf3T (4.37) +y y 

a 
uTz + vTlI = R + y[(R + y) Tylll 

where 1/ is the kinematic viscosity, a is the thermal diffusivity, and f3 is the 
coefficient of thermal expansion. The boundary conditions at the surface 
and at infinity are: 

u(x,O) = v(x,O) = 0 

T( x, 0) or - R( x) Ty (x, 0) is prescribed 

u(x, 00) = T(x, 00) ;:: 0 (4.38) 

Introducing the Stokes stream function,';', such that 

(R+ y)u= tPy (R + y)v = -';'z 

The first of Eq.(4.37) is satisfied. The remaining two equations can be 
written as 

( a a)';'l1 _ a [( ) a ( tPy )] 
tPlI ax - tPz ay R + y - 1/ ay R + y ay (R + y) 

+gf3(R + y) T 
a a a 

(';'11 ax - tPz ay) T = a ay ((R + y) Ty) (4.39) 

The boundary conditions can be written as: 

';'(x,O) = tP,,(x,O) = lim tPy = T(x,oo) = 0 
. 11-00 Y 

T(x,O) or - R(x) TlI (x,O) = Qxm (4.40) 

We now introduce the variables according to the affine transformation 
as follows: 

.7.(- _) ';'(x, y) 
'I' x,Y =~ j T(x, y) = T(;~ y) 

R(x) = R~) j x=-=- j y=1-
Xo Yo 

(4.41) 

The reference variables tPo, To, Ro, Xo and Yo are determined such that a 
minimum paranletric description results. 

Transforming Eq.(4.39) by using Eq.(4.41), we get 

(-a - a) [ ib,,] I/Xo a ( _) a ib,,) 
tPfI ax - tPit ay S(y) = To ay S(y ay (S(y) 

+gf3oToXoY~ [(Ro)ll+ y] T 
';'5 Yo 

(ib" a_ - ibit aJ T = axo [(Ro)ll+ fi] Tfl 
ax ay tPo YO 

The boundary conditions are transformed into: 
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- - ( -'f;fJ T( tP(x,O) = tPfJ x,O) lim (-::- = x,oo) = 0 
fJ-O y 

T(x,o) = Q;: (xm) 

The parametric form of the solution can be expressed as: 

1/1 = l/Io/( ~j 1-1 ~ j IIXo j gf3 To:oy~ , C:Uo 1 Qx~) 
Xo Yo Yo tPo tPo 1/10 To 

T = Tog( ~j 1-1 ~ j IIXo j gf3 Toxoyt, axo 1 Q~) (4.42) 
Xo Yo Yo 1/10 tP5 1/10 To 

For minimum parametric description, we set 

Q~ _ 1 . g{3Toxoyt = 1 . IIXo _ ., Ro = 1 
To -, 1/15 'To - 1 Yo 

Recognizing that Pr=lIja is the Prandtl's number, the similarity trans­
formation is obtained by suitably eliminating the reference variables: 

where 

1/1 (x, y) = IIxl(~j Pr) 

T(x,y) = Qxmg(~jPr) 

y 
~ = (L)1/4 x(1-m)/4 

g#Q 

Also,the following relationship holds for the variations of R(x): 

(4.43) 

(4.44) 

where K is a dinlensionless paranleter related to the Grashof number. 
Sul)stituting Eq.(4.43) into Eqs.{4.39) and (4.40), the following ordi­

nary differential equations can be obtained: 

I" - (1- 1)( L), - 1 + m (/)2 + (K + dg = 0 
K+~ 2 K+~ 

(4.45a) 

[(K + dll' + Pr(fg' - ml g) = 0 (4.45) 

with the transformed boundary conditions as: 

1(0) = 1(0) = lim [i'(d] = g(oo) = 0 
~-oo ~ 

(4.46a) 
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g(O) or - Kg' (0) = 1 (4.46b) 

Analytical solutions for Eqs.(4045) and (4046) were discovered by Yih6 

for the case when m=-l and K=O (with g(O)=l). For Pr=l, his solutions 
can be written as: 

1 
g(d = (1 + ~2/y196)3 

and for Pr=2, 

.:2 1 
f(d = 2(1'; ~2/8) ; g(d = (1 + ~2/8)4 

For the general problem, numerical integration may be used to obtain the 
solution. 

Since the Hellums-Churchill method utilizes an affine transformation, 
the method could yield new and significant results even in the relatively 
well-trodden fields of fluid mechanics and heat transfer. Solutions available 
by this method remain hidden from the traditional dimensional procedures 
(MLT system of dimensions). The familiar Falkner Skan family of solutions 
of boundary layer equations is an example. 

4.6 Deflection of a Semi-Infinite Wedge Shaped Plate : Birkhoff-Morgan 
Method 

The one parameter linear group of transformations is used in this ex­
ample to obtain the transverse deflection of a semi- infinite wedge-shaped 
plate of constant thickness, which is clamped along one edge and is free at 
the other, as shown in Figo4.2. 

p~. 
w 

FREE EDGE 
s 

y 2h 
n 

z 

Figo4.2 Wedge Plate Bending 

74 



www.manaraa.com

The plate equation for small deflections can be expressed as: 

q(x, y) 
=--

D 
(4.47) 

where w(x, y) is the deflection of the plate, D is the bending rigidity, and 
q(x, y) is the transverse load per unit area. 

We now define a one-parameter linear group G as follows: 

w= A"w j x= AfflX j t= Ant (4.48) 

where A is the paranleterj m, n and p are constants to be determined by 
invoking invariance of Eq.(4.47) under G , such that 

(4.49) 

Therefore, 

(4.50) 

For invariance, 
m p 
- = 1 and - = 4 
n m 

It is also noted that q(x, y) = q(x, y) = qo (a uniform plate loading). The 
absolute invariants are obtained by determining r and s such that: 

(4.51) 

Therefore, 
r = - m = -1 j S = - E. = -4 

n m 

and the similarity transformation can be expressed as 

(4.52) 

Substitution of Eq.(4.52) into Eq.(4.47) gives the following ordinary differ· 
ential equation: 
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-24~ df + 24/ = qo 
~ D 

(4.53) 

The general solution for Eq.(4.53) has been found as 7: 

For the clamped edge, the slope and deflection is zero, therefore, w=O 
and Wy = O. In terms of similarity variables, 

/(0) = 1(0) = 0 (4.55a, b) 

For the free edge at an angle of f3 to the x axis, the bending moment and 
shear force are zero. Therefore, along ~ = tan(f3), the bending moment can 
be expressed as 

(4.56c) 

and the vanishing shear force as 

a 'l. a 2 ()a --'V~w sznf3 + - 'V W cosf3 - 1 - 11 -ax ay as 

(4.56d) 

Using conditions /(O)=f'{O)=O, both 01 and O2 are found to be zero. 
Therefore, 

(4.57) 

If y/x=tan(f3)=k (constant), then along ~=k Eqs.{4.56c) and (4.56d) be-
come: 

and 

d/ 
12(1 + IIk2)/(k) - 6klllk + (2 - 11)] (di' )r=k 

+llIk4 + 2(2 - lI)k2 + 11]( ~;) r=k = 0 

1-11 df 
24k( 1 + 1 + k2 )f(k} + 6[3k2 + (2 - 11)( di') ;=k 

-6(1 + k2)(~;) ;=k + (1 + k2)2( ~{ )r=k = 0 
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Substituting f(d from Eq.(4.57) into Eqs.(4.58a) and (4.58b), we get two 
simultaneous equations: 

and 

[8k6 + 7k4(2 - /I) + 3k2(1- /I) + 1]03 + 2k[k2(S - 3/1) 

kP 
+(1 + /I)] 04 = - 4D[4k4 + k2 (5 - /I) 

+2k(1 - /I) + (1 - /I)] 

6/1k(k2 + 1) 03 + 2[k4(6 - /I) + 2k2(1 + /I) - /1]04 

= ~[2k2(1- 2/1) - /lk4 - /I] 
4D 

Therefore, constants 03 and 04 can be obtained. 
The deflection,w(x,y),can be written as 

Other boundary conditions for the edges of the plate can be similarly con­
sidered. 

4.7 Heated Jet: Birkhoff-Morgan MethodS 

A laminar jet of an incompressible fluid emerging from a narrow slot 
or a circular hole and mixing with the surrounding fluid(see Fig.4.3), where 
the physical properties are temperature dependent, have applications in 
liquid metal injection and high temperature arcs. 

ro;' __ _ 
L-.t"'J 

Fig.4.3 Heated Jet 
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The two-dimensional laminar jet flow of the incompressible fluid in a 
medium at rest with infinite plane boundary and at constant temperature 
is considered. The dependence of viscosity and thermal conductivity on 
temperature for constant pressure and steady flow is assumed to be 

/-L = /-Lo/(e) j k = ~.p(e) 

The equation of motion can be written as 

au a'fJ 
-+-=0 ax ay 

(4.60) 

(4.61a) 

(4.61b) 

(4.61c) 

u and 'fJ are components of velocity in the x and y directions,p is mass 
density,e is the temperature,/-L (0) is the viscosity and k(O) is the thermal 
conductivity. 
The boundary conditions are: 

_ _ au ao 
y=o:v=-=-=o 

ay ay 
(4.62a) 

y=oo:u=9=0 (4.62b) 

The momentum flux across any cross-section perpendicular to the jet 
axis will be assumed to be constant,i.e., 

(4.63) 

Had there been no heat dissipation, the jet would have satisfied one more 
physical requirement,i.e.,constancy of heat flux: 

Q = 100 pC,.Oudy = constant (4.64) 

We will now nondimensionalize the equations and conditions by intro­
ducing the following quantities: 

u 
u= -

avo 

Mo 
a=--

2pvt 
ii 

v=­
cwo 

x=ax y= ay 

(4.65) 
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where Vo = 1-'0/ P and Gp is the specific heat at constant pressure. 
We now introduce stream function,tJI, such that 

atJI atJI 
U=-jV=--

a1/ ax (4.66) 

Therefore, Eq.(4.61a) is satisfied and Eqs.(4.61a)'(4.61b)'(4.63) and (4.64) 
can be written as: 

atJI a2tJ1 atJI a2tJ1 a a2tJ1 
a1/ axa1/ - ax a1/2 = a1/ [/(0) a 1/2 ] 

atJI ao _ 8tJ1 80 = .!. ~ [4>(0) ao] 
81/ 8x 8x 81/ ).. 8y 8y 

+/(0)(8 2tJ1 )2 
8y2 

100 8tJ1 (-)Ody = 0 
o 8y 

(4.67a) 

(4.67b) 

(4.67c) 

(4.67d) 

We will now invoke invariance of Eqs.(4.67) under a one-parameter 
linear group of transformations: 

0!1,0!2,t31 and 132 will be determined by imposing conformal invariance on 
the equations. 

Since linear groups have been assumed at the outset, we stipulate that 

1(0) = 0' and 4>(0) = 86 

The conformal invariance relationships are: 

0!1 + 0!2 - 131 - f32 = 20!2 - f320 - f32 

= -f321 + 2(20!2 - f3d 

Case (i}:No Viscous Heat Dissipation 
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Eq.(4.68) can be solved, and the invariance can be determined to give 
the following similarity transformations: 

1 __ 1_ 

tP = XH'I F(d j 8 = X 3+'1 G(d 

where the similarity variable 

The transformed ordinary differential equations are 

F'G+FG' = - 3+,), .!!..(G"d) 
.l. ~ 

100 (F')2 ~ = 1 

100 (F'G)~ 
The other boundary conditions are: 

~ = 00 : F' = G = 0 

Case (ii) Viscous Dissipation Present 

(4.69) 

(4.70a) 

(4.70b) 

(4.70c) 

(4.70d) 

(4.71a) 

(4.71b) 

When viscous dissipation is present, we ignore Eq.(4.64) and solve 
the remainder of the equations and boundary conditions. Invocation of 
conformal invariance would lead to the following relationships: 

£l1 - £l2 - /31 + /326 = 0 

2a2 - 2/31 + /32(1- ')' + 6) = 0 

£l2 - 2131 = 0 

The similarity transformation for /32=1=0,,), = 6 is given by 
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(4.73) 

The ordinary differential equations for this case can be written as: 

(F')2 + F F" = -(3 + 2,),)( (i1 F")' 

2F' G - Fd = - 3 + 2')' [( (if d)' + ,),(i1 F"] 
>. 

100 (F')2 de = 1 

with the boundary conditions: 

e = 0 : F = F' = d = 0 

e=oo: F' = G=O 

Consider the spiral group of transformations 

ii; = ei31a ,p e = e{J29 

(4.74b) 

(4.74c) 

(4.75a) 

(4.75b) 

Conformal invariance of Eqs.(4.67a),(4.67b) and (4.67c) would give rise to 
the following relationships: 

Q2 - (31 - f32 = 2Q2 - (328 - f32 

= -(321 + 2(2Q2 - ,8d 

Q2 - 2,81 = 0 ; (31 + (32 = 0 

When there is no dissipation condition, similarity exists only for ')' = 
8 = -3. Letting p = Q2/Qb where p is some constant, and 

The similarity transformation can be written as: 

It can be verified that similarity solutions do not exist under linear or 
tbe spiral group for the dependence f = e"'lo and ¢ = l,(I. 
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4.8 Unsteady One-Dimensional Gas Dynamics Equations: Characteristic 
Function Method9 

Consider the unsteady one-dimensional flow of ideal gas with constant 
entropy. The basic equations can be written as 

au au 2 aa - + u-+ --a- =0 
at ax k- 1 ax 

aa k -1 au aa -+ --a-+ u- =0 
at 2 ax ax 

(4.76b) 

This system of differential equations can be considered as two algebraic 
equations with eight variables, namely, u,a,x,t, P1, P2, q1 and q2, where 

au aa au aa 
P1 = ax ; P2 = ax ; q1 = at and q2 = at 

Thus, Eqs.(4.76) become: 

(4.77a) 

(4.77b) 

We now define an infinitesimal group of transformations as follows: 

:2:= x+w(u,a,x,t) + 0(€2) 

t= t+€/3(u,a,x,t) + 0(€2) 

U = U + €mdu, a, x, t) + 0(€2) 

11= a+wi-2(u,a,x,t) + 0(€2) 

Ih = P1 + €Pd u, a, x, t, P1, P2, q1, q2) + 0(€2) 

P2 = P2 + €P 2(u, a, x, t,P1,P2,Q1, q2) + 0(€2) 

(1 = ql +€Qdu,a,x,t,Pl,P2,Ql,q2) + 0(€2) 

(2 = q2 +€Q2(u,a,x,t,Pl,P2,Ql1q2) + 0(€2) 

(4.78) 

The functions o.,/3,m1,m2, P1 ,P2,Q1 and Q2 can be expressed in terms of 
two characteristic functions Wl and W2 as follows: 

a W1 a W2 
0.=--=--

apl ap2 
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and 

/3 - a W2 _ aWl 
- aq2 - aql 

aWl aWl 
ml = --Pl + --ql - Wl apl aql 

aW2 aW2 
7n:2 = --P2 + --q2 - W2 

ap2 aq2 

a Wl a WI aWl 
-Pl = --Pl + --P2 +--au aa ax 

aWl aWl a WI 
-Ql = --ql + --q2 +--

au aa at 
aW2 aW2 aW2 

-P2 = --PI + --P2 +--au aa ax 
aW2 aW2 aW2 -Q2 = --ql + --q2 +--
au aa at 

The characteristics functions can be written as: 

W2( u, a, x, t, P2, q2) = W21 (u, a, x, t)p2 

+ W22 ( u, a, x, t) q2 + W23 ( u, a, x, t) 

(4.79) 

(4.80a) 

(4.80b) 

It can be seen that the characteristic functions are linear in PI ,P2 ,ql and 

Substituting the characteristic function from Eqs.(4.80) into the first 
four equations of Eq.(4.79), we get: 

The characteristic functions can therefore be written in terms of a,/3,ml 
and ffl2 as: 

and 

+ml (u, a, x, t) 

W2(u,a,x,t,P2,q2) = a(u,a,x,t)p2 +/3(u,a,x,t)q2 

+ 1n:! ( u, a, x, t) 
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The characteristic functions in their new form are now substituted into 
the last four expressions of Eq.(4.79), leading to: 

( 4.83) 

Under the infinitesimal group of transformations, the system of differ­
ential equations, Eqs.(4.77), are invariant if 

UGj = 0 (i= 1,2) ( 4.84) 

or, in expanded form, we have 

(4.85) 

where i,jl=1,2. 
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Substituting Gi from Eqs.(4.77} into Eq.{4.85}, making use of the ex­
pressions given by Eq.(4.83) and eliminating q1 and q2, we get: 

and 

2 2 - 0 91P1 + 92P2 + 93P1 + 94P2 + 95 -

220 9GP1 + 97P2 + 98P1 + 99P2 + 910 = 

{4.86a} 

{4.86b} 

where 91, •..• ,910 are functions of P1,P2,Q1 and Q2 and are listed as follows: 

aa 2a at7IIJ aa 2ap 
91 = m1 - u- + ---- - - + u -ax k - 1 au at ax 

a P 2 a P k - 1 a m1 +u- + a - - --a-at ax 2 aa 

92 = _2_(t7IIJ + aat7IIJ _ aaa + auap _ aam1) 
k - 1 aa ax ax au 

ap ap 
+a-+ au-at ax 

2ap k-l aa k-l ap 
93 = a au + -2-a aa - -2-au aa 

2a aa 2au ap 4a2 ap 
94 = ---- + --- - ----,.~ k-laa k-laa (k-l)2au 

am1 2a at7IIJ am1 
95 = Uax + k - 1 ax + at 

k-l( am1 aa ap 
96 = -- mz + a- - a- + 2au-

2 au ax ax 

_aamz+ap) 
aa at 

k - 1 am! aa aa 2 ap 
97 = m! + -2-aTa - u ax - at + a ax 

2a am2 2ap ap -----+u -+u-k - 1 au ax at 

98 = k-l( _ aaa + auap _ k-l a2ap) 
2 au au 2 aa 
~ap 2a aa 2a ap 

99 = a~ a a + k - 1 au - k - 1 u a u 

k - 1 am! at7IIJ at7IIJ 
910 = -2- aax + Uax + at 
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Since these functions are independent of the p's and q's, all the g's must 
be zero. Putting these g's to zero, rearranging the terms and combining 
the equations, we finally get: 

'1/ f3 _ 80: _ k- 1a8f3 =0 
au au 2 8a 

/f3 _ Ie - 1 u 8f3 + Ie - 180: = 0 
au 2 8a 2 aa 

aml 81T11J 
au = 8a 

_2_ 81T11J _ Ie - 1 aml = 0 
Ie - 1 8u 2 8a 

aml 8ml 2a a1TllJ 
u-a +-a +-Ie I-a =0 x t - x 

8ml 2u 81T11J 2 a1TllJ 
a ax + Ie - 1 ~ + Ie - 1 at = 0 

ao: af3 ao: 2 2 af3 
ml - - + u- - u- + (u + a ) - = 0 at at ax ax 

1TIIJ + a(af3 _ ao:) + 2au a/3 = 0 
at ax ax 

(4.87) 

Any form of the functions o:,/3,ml and 1TIIJ satisfying all eight equations 
in Eq.(4.87) will be a group of transformations. 

Consider the special case in which both ml and m2 are linear with 
respect to u and a. Thus, we write: 

(4.88) 

Substituting the above into the third and fourth equation of Eq.(4.87) 
we get: 

(Ie - 1)2 
1TIIJ2 = mll ;' 1TIIJl = 4 m12 

The functions ml and 1TIIJ therefore becomes: 

(4.89a) 

(4.89b) 
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from which, the fifth and sixth equations of Eq.{4.87)' we get: 

am13 amll 2 am12 (k + 1) (am13 amll) --+--u +-- -- au+ --+-- u 
at ax ox 2 ax at 

( a m12 2 a "'-'23 ) 2 ( a mll) 2 0 + --+---- a+-- -- a = 
at k - 1 ax k - 1 ax 

(4.90a) 

and 
8"'-'23 (8m13 amll) (k - 1 am12 a~3) 
at+ --a;-+at a+ -2-at+--a;- u 

( k+ 1amll) am12 2 k- 1am12 2 + ---- au+--a +----u =0 
k- 1 ax ax 2 ax 

(4.90b) 

Eqs.(4.90) are satisfied identically only if all the coefficients are zero. We 
then get: 

am13 a "'-'23 amu am12 
at=at=a;-=a;-=O (4.91a) 

am13 amu --+--=0 ax at 
(4.91b) 

am12 + (_2_) a "'-'23 = 0 
at k - 1 ax 

(4.91c) 

Eq.(4.91a) shows that m13 and "'-'23 are functions of x only, and mll and 
m12 are functions of t only. Let us put 

"'-'23 = Aox + Bo 

Substituting Eq.(4.92) into Eqs.(4.91b,c), we get 

mu = -Ollt+ 014 

2 
m12 = --k-Aot+ ~ 

-1 

Substituting mU,m12,m13 and ~3 into Eq.(4.88), we then get: 

(k-1)2 2 k-1 
"'-'2 = (- -k-Aot+ 02)U+ (- --Ollt+ Cu)a 

4 -1 2 

(4.92a) 

(4.92b) 

(4.93a) 

(4.93b) 

+(Aox+ Bo) (4.94a, b) 
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For the functions a and (3, let us consider the case in which 

(4.95a) 

(4.95b) 

Substitution of a and (3 from Eq.{4.95) into the first two equations of 
Eq.{4.87) leads to 

8(30 8ao k - 1 8(30 
u------a-=O 

8u 8u 2 8a 
(4.96a) 

8(30 k - 1 8(30 k - 18ao 
a- - --u- + ---- = 0 

8u 2 8a 2 8a 
(4.9Gb) 

Next, a and (3 are substituted into the last two equations of Eq.{4.87) and 
we get: 

-02a+ 011 X + (32{U2 + a2) = 0 

k-l {k-l)2 
Bo +Aox- (-2-Ao)ut+ 4 02 U- Ollta 

+( 014 + 131 - a2)a + 2(32 au = 0 

For Eqs.{4.97) to be satisfied identically, we get: 

011 = Ao = O2 = 132 = Bo = 0 

012 - a1 = 0 

0 14 + 131 - az = 0 

(4.97a) 

(4.97b) 

(4.98) 

Using Eq.{4.98)' the final form of a, f3,m1 and mz can be written as: 

mz = 014 a 

which are identical to the group of transformations derived by Mueller and 
Matschat 10. 

4.9 Summary 
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In this chapter, both direct as well as group-theoretic methods have 
been applied to a variety of problems in engineering science. The direct 
methods such as the separation of variables and dimensional analysis are 
relatively simple to apply. The analysis, however, is restrictive because of 
the assumed form of transformations. The group-theoretic methods such 
as the Birkhoff-Morgan method and the Hellums- Churchill method utilize 
the underlying idea of invariance of the equations under an assumed group 
of transformations. Again, the resulting invariant solutions would be re­
strictive. Most boundary value problems of physical interest are invariant 
under linear and spiral groups of transformations. The group invariants 
for these groups can be readily obtained by solving a set of algebraic equa­
tions that arise as a result of invoking invariance of the partial differential 
equations and auxiliary conditions. From an engineering standpoint, the 
advantage of the Hellums-Churchill method is that the notion of "dimen­
sions" are implied in the procedure and the final representation obtained is 
either self-similar or normalized. The deductive group procedures based on 
a general infinitesinlal group of transformations lead to invariant solutions 
not obtainable by either Birkhoff-Morgan, Hellums-Churchill or any other 
direct or inspectional group procedures. 
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Chapter 5 

SIMILARITY ANALYSIS OF BOUNDARY VALUE PROBLEMS 

WITH FINITE BOUNDARIES 

5.0 Introduction 

It is commonly believed that similarity analysis of boundary value 
problems in science and engineering is domain-and-boundary condition lim­
ited, in that semi-infinite or infinite domains are required. A review of liter­
ature on similarity would, indeed, reveal that similarity solutions are mostly 
available for boundary value problems that lack a characteristic length in 
one or more coordinate directions. In his book, Hansen 1 points out that 
problems with finite boundaries associated with finite, non-zero values do 
not usually possess similarity solutions. Therefore, he suggests that a lack 
of characteristic length in a coordinate direction could be used as a hint to 
proceed with similarity analysis and seek possible solutions. 

A great majority of similarity solutions in science and engineering have 
been obtained by analysis based on dimensional or affine groups of trans­
formations. This is understandable since most partial differential equations 
that represent physical problems are dimensionally homogeneous, and in­
variance of the equations under a dimensional group can be readily invoked. 

A dimensional group of transformations can be expressed as 

;p. - a'7il n"li2 a'7ir .... 
"'1-l"'2·······r"'l (5.1) 

(i= 1,2,3, ..... ,m) 

The one-parameter linear group of transformations 18 a special case of 
Eq.(5.1), and can be written as 

(5.2) 

(i = 1,2,3, .... , m) 

For further clarification, we consider the motion of a fluid over a suddenly 
accelerated infinite plate. The infinite plate is assumed to be immersed in 
an incompressible fluid which is at rest. At time t = 0, the plate is sdddenly 
set in motion in its own plane at a constant velocity, Uo. The equation of 
motion is a2 u. au 

v-=-
ay2 at (5.3) 

where u is the fluid velocity parallel to the plate motion, and v is the 
kinematic viscosity. The initial and boundary conditions are: 

u(y,O) = 0 ; u(O,t) = Uo ; u(oo,t) = 0 (5.4a,b,c) 
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By invoking invariance of Eqs.(5.3) and (5.4) under a dimensional 
group of transformations, the similarity transformation can be written as 

y 
u(y, t) = Uoc/>(~) where ~ = Vi 

In the transformed coordinate, Eqs.(5.4) can be written as 

c/>(~ = 0) = 1 j c/>(~-+oo) = 0 

(5.5) 

(5.6a, b) 

When y-+oo, the similarity variable ~-+oo. So is the case when y is finite 
and t = O. Therefore, the boundary conditions 

u(y,O) = u(oo, t) = 0 

would be the necessary consolidation of the auxiliary conditions that wouldl 
lead to the requirement of semi-infinite domain in the direction of y. The 
need for semi-infinite or infinite domain is, for many physical problems, 
a direct consequence of invoking invariance under a dimensional or affine 
group of transformations. The questions that need to be raisedare:(l) 
would it be possible to obtain similarity solutions for finite domain bound­
ary value problems by seeking illvariance under either dimensional or affine 
groups? (2) is it possible to obtain a broad classification of the type of 
boundary value problems for which sinlilarity solutions would exist for fi­
nite domains? In the remainder of this chapter we examine, by way of 
examples, some instances for which similarity solutions in finite domains 
can be obtained. 

More specifically, we consider the following types of problems: 
(i) boundary value problems with moving boundaries, 
(ii) invariant boundary and surface descriptions, 
(iii)invariance under groups other than dimensional and affine. 

5.1 Boundary Value Problems With Moving Boundaries 2 

Certain moving boundary problem descriptions become fixed when ex­
pressed in terms of similarity coordinates. The requirement for such prob­
lems is that the moving boundary should be invariant under the same group 
of transformations as are the governing equations and the other auxiliary 
conditions. 

Consider the problem of freezing of a body of water of thickness D 
which is initially held at a temperature, T, (phase change temperature, 
assumed to be zero degrees). Initially, the surface temperature drops to TB 
and is su bsequently held there. The surface x = D is effectively insulated 
and the liquid temperature has a constant value, T, = O(see Figure 5.1). 

The equation governing heat transfer in the frozen zone is given by 

82 Tl 1 8 Tl 
ax2 = Q1 Tt [0< x< X(t)] (5.7) 
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The boundary conditions are 

TdO, t) = T, T1(X(t), t) = 0 (5.84, b) 

o Ts .=0 

REGION I FROZEN ZONE 

• = X(t) 

INTERFACE Tf = 0 

REGION 11 UNFROZEN ZONE 

• = D 

INSULATED BOUNDARY 

Fig.5.l One-Dimensional Freezing Problem 

At the moving boundary, the heat balance equation can be expressed as 

(5.8e) 

where Q1 is the thermal diifusivity, K1 is the thermal conductivity, p is the 
density and L is the latent heat of fusion. 

A similarity transformation can besought using dimensional, or affine 
groups, and can be written as: 

Tdx, t) = T,F(d, 
x 

where ~ =--
2~ 

(5.9) 

The boundary conditions in the transformed coordinate are given by: 

F(O) = 0 F(~) = 0 (5.10a, b) 

where ~ = ~ locates the moving boundary such that 

X( t) = 2~ vo:;t (5.11) 

The value of ~ can be determined by introducing Eqs.(5.9) and (5.11) into 
Eq.(5.8c) to give the following relationship: 

(5.12) 
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Cl is the specific heat of ice. 
It can be seen that there is no requirement for semi-infinite domain, 

since Eq.(5.11) represents an invariant boundary. The finite domain of va­
lidity for the similarity solution is 0 < x < X( t). This is an example where 
invariance has been sought under a dimensional or affine group of transfor­
mations, and a similarity solution in a finite domain has been discovered. 

Invariant solutions for the problem of heat conduction accompanying 
a change of phase based on invariance under a general group of transfor­
mations have been derived by Bluman and Cole3 . These are examples of 
similarity solutions in finite domains that are obtained using groups other 
than dimensional or affine. 

S.2 Invariant Boundary and Surface Description 

Whenever the boundary surfaces or geometries of" certain boundary 
value problems are invariant under the same group of transformations as 
are the governing equations, then similarity solutions in a finite domain 
could be discovered. 

The simplest example of a similarity solution in a finite domain is 
the problem description with axisymmetry. Consider, the bending of an 
axisymmetric circular plates for which transverse defiection,w,is given by 

(5.13) 

where q(x, y) is the load per unit area, x and y are the Cartesian coordi­
nates, and D is the bending rigidity of the plate. The symmetry is obvious 
and the coordinate transformation 

(S.14) 

would transform Eq.(S.13) into a description in terms of r alone as follows: 

(S.lS) 

While transformations such as Eq.(S.14) convert a partial differential equa­
tion into an ordinary differential equation and are similarity transforma­
tions, they are seldom mentioned as such in similarity literature. 

Consider now the problem of torsion of a conical shaft with a circular 
cross-section that is subject to terminal couples. The problem reduces to 
the solution of the following equation: 

a2F SaF a2 F 
-----+--=0 
ar2 r ar az2 ( 5.16) 
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where F(r,z) is a stress function such that 

(5.17) 

and 

(5.18) 

T()z and T rl:I are the shear stress components, and JL is the Lame's elastic 
constant. The cylindrical system of coordinates (r,8,z) is used in the math­
ematical description (Figure 5.2). 

or, 

The twisting moment, M, on any cross-section is given by 

M = 1a 
T()z r(2ndr) 

(aaF 
= 27rJL 10 a;:dr 

M = 27rJL[F(z, a) - F(z,O)] 

r 

~~z 
\ 1-~~1 
\ \ 

\ 

e 

o 1/ 
./.~-+---./ I Z 

-
z: Zo 

DEFINED BY 

~b 'Tan (1'0) , zao 

Fig.5.2 Torsion of Conical Shaft 

The similarity transformation can be written as4 

F(r,z) = C4>(~), 
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The resulting ordinary differential equation can be written as 

d~2 + 1) ~: + (2~2 - 3) Z = 0 

Integrating Eq.(5.22) twice, 

or, 

where A, B ,{3 0 and (31. are integration constants. 

(5.22) 

(5.23a) 

(5.23b) 

The expression z/(r2+?)l/2 is a constant on the lateral surface of the 
conical section, since it is equal to the cosine of one half of the vertical angle 
of the conical shaft; hence, F( r, z) would assume a constant value on the 
lateral surface. 

The value of f30 can be determined from Eq.(5.20) when the twisting 
couple in the terminal section is specified. Therefore, 

M 
f30 = 27rp, (cos(t/lo) - ~cos3(t/lo) - ~] (5.24) 

where z 
cos(t/lo} = (r2 + z2)1/2 

The shear stresses 7t)z and 7 rO can be computed as 

p,f3orz 
(5.25a) 

7rlJ = - (r2 + z2)5/2 (5.25b) 

As another example of similarity solution in finite domain descriptions, 
consider the classical problem of "spiral flows" of incompressible viscous 
fluids5 , as shown in Figure 5.3. The Navier-Stokes equations describing the 
flow can be written as: 

(tI, atl, + tlo atl r _ V02) 

ar r ao r 

= _ ap + (a 2 v, + ! atl, _ v, 
ar ar2 r ar r2 

1 a2 vr 2 atlO) 

+ r2 a02 - r2 To (5.26a) 
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(5.26b) 

WALL c 

---
WALL d 

Fig.5.3 Spiral Viscous Flow 

(5.26c) 

The non-dimensional variables in Eq.(5.26) are related to their physical 
counterparts (r, Vr , Vo ,p) by the following relationships: 

r~ ~ ~.~ 
r = LV Re J tlr = Uo J till = Uo v Re 

p = L J where Re = UoL pug II 

where r is the radial coordinate, ti rand tio are the velocity components in the 
rand 8 directions,p is the pressure, Re Reynolds number, p is the density, 
L is the is the length, II is the kinematic viscosity and Uo is a reference 
velocity. 

We now introduce the stream function t/; as follows: 

at/; 
rtlr = Be J 
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Introducing Eq.(5.27) into Eqs.(5.26) and simplifying, we obtain: 

1 at{; a2 t{; 1 at{; 2 1 at{; a2 t{; 
[r2 ae arae - ,.s (ae) +; ar aear 

1 at{; 2 ap 1 aSt{; 
-;(-a,~) ] = - ar + [;ar2ae 

1 a2t{; 1 aSt{; 
+ r2 arae - r2 a02ar] 

[ _ ! at{; a2 t{; + ! at{; a2 t{; _ ~ at{; a,p ] 
rae ar2 r ar aear r2 ae ar 
= _! ap + [_ aSt{; _ ! a2 t{; 

rae a,.s r ar2 
1 at{; 1 aSt{; 2 aSt{; 

+ r2 a; - r2 ae2ar + r2 ae2ar] 
Eliminating p between Eq.(5.28)' we get: 

a 1 at{; a2 t{; 1 at{; 2 

ae [r2 ao arae - ,.s (-ae) 

1 at{; a2 t{; 1 at{; 2 

+;80 aear - ;( a;) ] 
a at{; a2 t{; at/; a2 t{; 1 at/; at{; 

- ar[ - ae ar2 + a; aear - -;:8oa;] 
a 1 aSt{; 1 a2 t/; 1 aSt/; 

- ae [-;: ar2ae + r2 arae - r2 a02ar] 
a aSt/; a2 t{; 1 at{; 1 aSt/; 

- ar[ - r a,.s - ar2 + -;:a; - -;:a{J2ar 

(5.28a) 

(5.28b) 

2 a2 t{; 
+--] {5.29} 

r aear 
Invocation of invariance of Eq.{5.29} under a spiral group of transformations 

e* = e + Qla ; r* = re"'2 a ; t{;* = t/;ea3a (5.30) 

leads to Q1 = O,and the following similarity transformation: 

r 
'1 = -0 and t{;(e,r) = 1(17) 

ea 
(5.31) 

The resulting ordinary differential equation becomes: 
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+0(0 + 0 2 )'7[3 / ' + I" + ~J' 
'7 '7 

+[(1+ 0 2 )'7/" + (1 + 20 + 302 )/' 

+(1 + 20 + 02)tl' = 0 
'7 

The boundary conditions are: 

where 

'7 = '7 c : f( '7 c) = C , 1('7 c) = 0 

'7 = '7d f('7d) = d I ('7d) = 0 

r r 
'7c = eaco ' '7d = eadO 

The boundary descriptions 

(5.32a) 

(5.32b) 

(5.32c) 

are invariant under Eq.(5.30) and would represent the walls through which 
the flow takes place. The similarity solution for the problem of spiral flow of 
an incompressible viscous fluid can therefore be obtained in finite domains 
by solving Eq.(5.32). 

5.3 Invariance Under Groups Other Than Dimensional Groups 

With the exception of physical problems involving a moving bound­
ary,the restrictions of similarity solutions to semi-infinite or infinite do­
mains can usually be attributed to the use of dimensional or affine groups 
of transformations. It is then reasonable to expect that such restrictions 
need not exist if invariance under groups other than dimensional or affine 
is sought. 

Consider again, the linear heat equation 

(5.33) 

We now define a spiral group of transformations 

(5.34) 

For Eq.(5.33) to be invariant under the group defined above, P2=O. The 
absolute invariants can be found by the Birkhoff-Morgan method as 

2 P3 where n =--
PI 

(5.35) 
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Eq.( 5.35) corresponds to the classical separation of variables, u = X( x) T( t), 
which can be used to obtain eigen-value solutions in finite domains. 

Example 5.1: Consider a finite bar of length L with a heat source at x = 
!to (0 < !to < L). Each end of the bar is held at a temperature of zero. 

The function Fn(d in Eq.(5.35) satisfies the ordinary differential equa­
tion 

(5.36) 

Therefore, 
Fn(X) = An sin(nx) + Bn cos(nx) (5.37) 

Using the boundary condition u(O, t) = 0, we get Bn = O. The eigenvalues 
are obtained by applying the condition u( L, t) = O,giving 

An sin( nL) = 0 

Therefore, 
nL= m1r (m= 1,2,3, ..... , 00) 

The solution can now be written as 

00 
u(x, t) = I>n(X, t) 

n=l 

IT the initial condition is specified as 

2 . m1rXo 
u(x,O) = 5(x - :1:0) , then Am = 'Lsan(-L-)' 

The required temperature distribution for the finite bar is given by 

(5.38) 

(5.39) 

The same arguments can be used for the linear wave equation governing 
transverse oscillations of a string, which can be written as: 

(5.40) 

where w is the transverse displacement and c is a constant. Defining a 
group of transformations 

(5.41) 
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we find that Eq.(5.40) is invariant if 12 = o. 
The absolute invariants are given by 

-),. 2t h' 2 . 13 e = x and Wn = e 4> (eL were 1\ = --
11 

(5.42) 

If 13/11 is set equal to iv, then the solution can be. written as: 

00 

w = I>iw"t4>n(X) (5.43) 
i=l 

4>n (x) corresponds to the eigen functions and Wn corresponds to the eigen 
frequencies for a given finite domain boundary value problem. Methods for 
finding these eigenvalues are discussed in text on vibrations G. Again, there 
is no requirement for semi-infinite or infinite domains. 

5.4 Summary 

Traditional similarity solutions in science and engineering have been 
mostly obtained by seeking invariance of the governing equations and aux­
iliary conditions under either a dimensional or an affine group of transfor­
mations. The requirement for semi- infinite or infinite domains has been a 
consequence of a need for a consolidation of auxiliary conditions in order 
that a similarity representation is possible for such group invariances. 

By way of examples, it was shown that similarity solutions for finite 
domain descriptions are possible for the following types of problems: 
(1) boundary value problems with moving boundaries for which similarity 

solutions can be obtained by seeking invariance under any group of 
transformations including dimensional and affine, 

(2) domains with invariant boundary or surface descriptions, and 
(3) boundary value problems for which invariance is sought under groups 

of transformations other than dimensional and affine. 
It can be concluded that similarity solutions for finite domain boundary 

value problems are possible if the governing equations and their associated 
auxiliary conditions are invariant under an appropriate group of transfor­
mations. Semi-infinite and infinite domains are mainly a consequence of 
invoking invariance under a dimensional or an affine group of transforma­
tions. 
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Chapter 6 

ON OBTAINING NON-SIMILAR SOLUTIONS 
FROM SIMILAR SOLUTIONS 

6.0 Introduction 

We have seen in the earlier chapters, that a similarity representation is 
obtainable for a boundary value problem provided the governing differen­
tial equations and the associated boundary conditions are invariant under 
a group of transformations. However, if any of the equations and bound­
ary conditions is not invariant under a group, then the problem becomes 
nonsimilar. 

Attempts have been made in the past to generate solutions for non­
similar problems from known similarity solutions 1. These techniques have 
mainly been applied to linear equations for which other well-known tech­
niques such as integral transforms are available. In this chapter, different 
methods for obtaining non-similar solutions from similar solutions for linear 
as well as nonlinear equations are examined. 

6.1 Superposition of Similarity Solutions 

When a given linear partial differential equation system is "almost" 
invariant (some term in the equations and/or auxiliary conditions is not 
invariant under a continuous group of transformations), new solutions to 
the non-similar problem can be constructed by using a linear combination 
of similarity solutions 2 • 

Example 6.1: Stokes Second Problem 

For the purpose of illustration of the method, we will consider the clas­
sical case of Stokes' second problem in which a plate oscillates harmonically 
parallel to itself at a velocity of Uocos{wt). The velocity of the fluid above 
the plate can be found by solving the simplified N avier-Stokes equation: 

82 11, 811, 
v-=-

8y2 8t 

subject to the boundary conditions: 

11,(0, t) = Uocos(wt) 

11,(00, t) = 0 

and the initial condition 
u(y,O) = 0 
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Eqs.(6.1),(6.2b) and (6.2c) are invariant under a one-parameter linear trans­
formation group,G1: 

(6.3) 

where the constant Q is the parameter of transformation. The boundary 
condition,Eq.(6.2a)' is not invariant under the above group. Therefore, a 
similarity solution cannot be directly determined for the problem. Since 
Eq.(6.1) is linear, the method of superposition can be applied. 

The similarity variable can be written as 

(6.4) 

The similarity representation is given by: 

(6.5a) 

and 
(6.5b) 

Since Eq.(6.2a) is not invariant under group G1 , the principle of superpo­
sition can be utilized as follows: 

(6.6) 

The boundary condition, Eq.(6.2a)' can be written as 

(6.5c) 

It follows that 
wn 

Cn = Uo-(-1)n/2 
n! 

(6.6a) 

(n = 0,2,4, .... ) 

and 
(6.6b) 

Therefore, the solution can be expressed as 

(6.7a) 

104 



www.manaraa.com

(wt)2 (wt)4 
= Fo(d - 2lF2(d + 4!F4(~) + ... (6.7b) 

where the functions Fn(d are obtained by solving Eq.(6.5a),subject to the 
boundary conditions 

(6.8) 

Na and Hansen2 have expressed the solution for Eq.(6.5a} subject to bound­
ary conditions,Eq.(6.8}, in terms of Hermite functions as follows: 

where the Hermite function is defined as: 

(6.9b) 

and 

(6.ge) 

In order to show the accuracy of the superposed similarity solutions, 
we will now compare it with the exact solution: 

U(x,t} = e-~~cos(wt- v'2wtd 
Uo 

It can be seen from figure 6.1 that good agreement is obtained. 

4.0 

3.0 

2.0 

1.0 

0.0 
-1.0 -0.5 0.0 

SOLUTIONS BY EQN. 6.10 
ARE SOLID LINE 

SIMILARITY SOLUTIONS 

/::, U)= Tt <> 3Tt 
2 2 

o Tto2Tt 

0.5 1.0 

Fig. 6.1 Comparison of Two Solutions 

105 

(6.10) 



www.manaraa.com

Example 6.2 One-dimensional Consolidation of Thawing Soils 

As another illustration, consider the problem of consolidation of thaw­
ing soils. Permafrost soils provide adequate bearing capacity for supporting 
most structures as long as soils remain in a frozen state. The thawing of 
permafrost soils which contain large quantities of ice can cause severe engi­
neering problems. When frozen soils thaw, water is released and settlement 
would occur as the water is expelled from the ground. IT the rate of water 
generation exceeds the discharge capacity of the soil, excess pore pressure 
will develop resulting in a reduction of shear strength of the soil, and sub­
sequent failures of slopes and foundations. 

A one-dimensional configuration (Figure 6.2) is considered for a step 
increase in surface temperature in the semi-infinite homogeneous mass of 
frozen ground. The movement of the thaw front is given by: 

X(t) = aVt (6.11) 

where a is a constant, t is time and X( t) is the distance of the thaw 
boundary from the surface. It is assumed that the soil is compressible in 
the thawed zone. 

GROUND SURFACE 

5 = I 

THAWED GROUND ( ) 

1-

______ ¥_'_;C_y ______ ~JXt 
MOVING BOUNDARY 

FROZEN GROUND 

v v 

Fig. 6.2 One-Dimensional Thaw Consolidation 

The consolidation phenomena is described by the well- known Terza­
ghi's equation of soil mechanics 3 and can be written as: 

(6.12) 

where u is the excess pore pressure in the thawed soil, x is the depth 
below surface, and Cv is the coefficient of consolidation. Eq.(6.12) is valid 
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for 0 < x < X( t) and for t > O. Since the surface x = 0 is considered free­
draining, the excess pore pressure 

u( x = 0, t) = 0 t > 0 (6.13a) 

The water that is expelled at the moving boundary during thawing flows 
outwards if an excess pore pressure is developed at x = X( t). For a saturated 
soil in which the effective stress-strain law is linear and Darcy's flow law is 
valid, the moving boundary condition is given by: 

'X( ) _ (X ) _ au(X( t)) (dX)-1 
Po + 'Y t u ,t - Cv ax dt (6.13b) 

where 'Y'=density of soil minus density of water, and Po is the applied load 
on the surface. . 

The initial condition is given by 

u(x, t = 0) = 0 (6.13c) 

For X(t) = a:Vt, an examination of Eqs.{6.12) and (6.13b) would reveal 
that a direct similarity transformation is not possible. A superposition of 
similarity transformations, however, would result in a meaningful solution. 
Therefore, 

where the similarity variable is 

x 
~=­

a:Vt 

and the constants are 

The similarity representation can be written as follows: 

with 

where R = a:/{2y'c;) is the thaw-consolidation ratio. 
Eqs.(6.15) and (6.16) can be solved to give 

II \ = erf(Rd 
C) erf(R) + exp(-R2)/(.J1rR) 
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where erf( ) is an error function. 
Similarly, h (~) can be obtained by solving the following: 

a;:: + 2R2~ ~ - 2R2h = 0 (6.18) 

12(0) = 0 and 2R2[h(~ = 1) - 1] = dh(~= 1) (6.19) 

The solution for Eq.(6.18) can be written as: 

where U( ) and V( ) are parabolic cylinder functions. On applying the 
boundary conditions,Eq.(6.19), and after carrying out some manipulations, 
we get: 

The superposed solution can therefore be written as 

where 

and 

u(x, t) = udx, t) + U2(X, t) 

poerf(Rd 
udx, t) = Ry'irerf(R) + exp(_R2).;:iR 

,y' X 

U2(X, t) = 1 + 1/(2R2) 

(6.21) 

(6.22) 

Eq.(6.22) describes the variation of excess pore pressure in a thawing soil. 

6.2 The Use of Fundamental Solutions 

We will now consider a partial differential equation of the form: 

Lu(x,tjXo,to) = 5(x- Xo)5(t- to) (6.23) 

where L is a self-adjoint differential operator, and (Xo, to) are the poles4 • 

The notation u (x, tj Xo, to) is introduced to emphasize the dependence of 
the solution on the poles Xo and f(,. Any solution of Eq.(6.23) is termed as a 
"fundamental solution". While the general fundamental solution contains 
an arbitrary number of constants, the so-called Green's function is obtained 
once the boundary conditions are specified. 

Example 6.9: Source Solution for Linear Heat Conduction 
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Consider a one-dimensional heat conduction process in an infinite bar 
with constant thermal properties. The bar is initially maintained at a 
uniform temperature (see Fig.6.3). The governing equation for temperature 
in the bar can be written as: 

aT a2 T 
pc- - k- = Qo(x- Xo) o(t- to) at ax? (6.24) 

In the above description, the source of heat, Q ,is located at a distance Xo 
from the origin. k is the thermal conductivity,p is the density of the bar, 
and c is the specific heat. 

-., 0 I x. 
I 
I 
I 
I 
I 
I 
I 
I 

: PLANE SOURCE OF HEAT 

Fig. 6.3 Conduction With Heat Source 

Making a change of variables x = x - Xo and t = t - to, the Green's 
Function for the heat conduction problem is the solution of: 

(:t ->.;;)g(x,t) = p~O(x)O(t) (6.25) 

(-00 < x< 00 j t~O) 

>. is the thermal conductivity,equal to k/(pc). The auxiliary conditions are: 

T(Xjt=O) T(x-dOOj t) = 0 (6.26) 

In addition, the law of conservation of total heat, which can be written as: 

1+00 
pc T(x, t)dx = Q 

-00 
(6.26a) 

must be satisfied. 
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Eqs.(6.25) and (6.26) are invariant under a group of transformations 

T* = {3-1/2 T j x* = f31/2 x j t* = {3i (6.27) 

Using any of the techniques described in chapter 3, the similarity transfor­
mation can be written as 

where 

g(XJ t) = Q!\'7F(A) 
pCVAt 

x 
~ = 2V>:t 

It should be noted that o({3t)= ¥. 
The similarity representation is given by 

and 

R-F dF 
~2 +2~~+2F=0 

F(~-+±oo) = 0 

/
+00 1 

F(d~ =-
-00 2 

(6.28) 

(6.29) 

(6.30a) 

(6.30b) 

Eqs.(6.29) and (6.30) can be integrated to give the following expression for 
Green's function: 

g(x,"t) = Q H(t) _ exp( ;;'2_) 
pc 2v!1r)..t 4)..t 

(6.31) 

where H(t) is the Heaviside function. 
In terms of the original variables, 

Q H( t - to) ( x - Xo) 2 

g(x,tjXoJto) = PC2V)..1r(t- to) exp( - 4)..(t- to)) (6.32) 

which is a well-known result that can be obtained by integral transforms. 

Example 6.4: The Euler-Poisson-Darboux Equation 

The equation for the problem of wave propagation in elastic rods of 
variable cross-section 5 and isentropic flow for a polytropic ga.s6 can be writ-
ten as: 

).. 
L(u) = Uu: + -Uz - Utt = 0 

x 

The fundamental solution to Eq.(6.33a) is the solution of 

L(u) = o(x- Xo)6(t- to) 
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We will use the infinitesimal approach of Bluman and Cole to find invariant 
solutions to Eq.(6.33b) 7. 

An infinitesimal group of transformation is defined as follows: 

ii = u + €f(x, t, u) + O(€2) 

X = x+ €X{x, t) + O{€2) 

t= t+€T{x,t) + O{€2) 

(6.34) 

f, X and T are the infinitesimals to be determined through invariance of 
Eq.{6.33b), which can be written as 

A A A 
+uz{2fz - Xu + Xtt - -Xz - -X +-f) 

x x x 
+(Xz - Tt)S{x- 3'{»)S{t- ~)l (6.35a) 

with 
X{xo,~) = T{3'{),~) = 0 (6.35b) 

Readers should note that 

Substituting the equation 

in Eq.{6.35), and equating to zero the resulting coefficients of derivatives 
of u, the following determining equations can be obtained: 

A 
Ixz - Itt + - Tx = 0 

x 
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Tt - Xil = 0 (6.36d) 

). ). 
2/z - Xu + Xtt + ;Xz - :r? X = 0 (6.36e) 

I(xo, to) + Tt{X<J, to) - Xz (2:0, to) = 0 (6.36f) 

From Eqs.(6.36d) and (6.36f), we have 

1(2:0, to) = 0 (6.37) 

Substituting Eq.(6.36a) into Eq.(6.36b) and substituting Eq.(6.36d) 

). 
2/+ -X= A(x) 

x 
(6.38) 

where A(x) is arbitrary. 
Eqs.(6.36a) and (6.36d) give 

(6.39) 

Thus,solving for I in Eq.(6.36e), we find that A(x)=a=arbitrary constant. 
However, on account of Eq.(6.35b) and Eq.(6.38), Q equals to zero. There­
fore, 

Next, we find that 

Comparing this with Eq.(6.36c) 

Iz = 0 Itt = 0 

Therefore, using Eq.(6.37), we get 

1=f3(t-f<J) 

and using Eq.(6.40) 
2xf3 X = --(t- f<J) 

). 

From Eqs.(6.36a} and (6.36d), 
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Using Eq.(6.36b) and setting f3 equals to 1, we get: 

/=t-to 
2x 

X= -T(t- to) (6,46a, b) 

T = (x5-?)_(t-to)2 
-'-"---'--\--'---'-- (6,46c) 

The similarity variable is given by 

u(x,t) = x-..x/2 g(d where ~ = x- (t- to)2 + x5 (6,47) 
x x 

with u(Xo,to)=1. 
The ordinary differential equation is 

By letting 
ifJ = ~ + 2xo, 

4xo 

Eq.{6,48) can be written in the hyper geometric form: 

(6,48) 

J2g dg -\ -\ 
4>(1- ifJ) d¢J2 + (1- 2ifJ) d¢J - 2(1- 2)g = 0 (6,49J 

The solution can be written as 

(6.50) 

where Ao is some arbitrary constant. 
Using the relations, 

F(a b' c' z) - (1- z)-a F(a' c - b· c' _z_) ", - , "z-1 

and 

( ) r(c)r(b-a)( )-a ( -1) 
Fa,bjcjz =r(b)r(c-a) -Z Fa,1-c+aj1-b+ajz 

-br(c)r(a- b) -1 
+(-Z) r(a)r(c _ b)F(b,1- c+ bj1- a+ bjz) (6.51) 

Thus we have 

113 



www.manaraa.com

In terms of the original variables 

(2Xo)A .\ .\ 
U(X, t) = I(x + Xo)2 _ (t _ to)2]A/2 F( '2' '2; 

(x- Xo)2 - (t- to)2 
1; (x+ Xo)2 - (t- top) (6.53) 

which is the required fundamental solution. 

6.3 Pseudo-Similarity Transformations 

For a boundary value problem to have a similarity solution, the govern­
ing differential equations and the auxiliary conditions should be invariant, 
under a group of transformations. However, if any of the auxiliary condi­
tions is not invariant under the group, then a non-similar description would 
result. We will discuss a technique which utilizes the similarity variables to 
obtain non-similar solutions for boundary value problems. The technique 
makes use of what we will call the "pseudo-similarity transformation" to 
obtain the required non-similar solution. 

Example 6.5 Ground Water Movement due to Arbitrary Change in Water 
Levels. 

The equation for the flow of ground water which uses the Dupuit­
Forchheimer idealization 9 can be written as 

(6.54) 

where K is the permeability of the homogeneous and isotropic aquifer, V 
is the void ratio, h is the height of the water table above the impermeable 
surface and t is time. It is assumed that all the flow takes place below 
the water table and the aquifer rests upon an impermeable horizontal bed 
(Figure 6.4). The auxiliary conditions for the problem can be written as 

h(x,O) = ho j h(x-+ooj t) = ho and h(O, t) = H(t) (6.55a, b, c) 

where H( t) is an arbitrary variation of water level at x=O. 
We will non-dimensionalize the equations by introducing the following 

variables: 

- =:.. -= Khot R() = H(t) h-(- -) = h(x,t) 
xL' t L2' I-' tho' x, t ho 

where L is the characteristic length. 
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Eqs.(6.54) and (6.55) then become 

~(hah) = a~ 
ax ax at (6.56) 

and 
h(x,O) = 1 ; h(oo,1) = 1 ; h(O,1) = .8(1) (6.57a,b,c) 

It can be easily seen that Eq.(6.57c) would prevent invariance of the above 
equations under a one-parameter group of transformations that would have 
led to a similarity solution. Therefore, the problem description is non­
similar. The "pseudo-similarity transformation" can be obtained by ignor­
ing the source of non-similarity, which for the present problem is Eq.(6.57c). 

x=O GROUND SURFACE 

WATER TABLE 

h 

Fig. 6.4 Ground Water Flow 

For the remaining problem description, the similarity transformation 
would be: 

~ = ~ ; f(d = h(x,1) (6.58) 

For the non-similar problem, the pseudo-similarity transformation can be 
written as 

T = t; ~ = ~ ; f(~ 1 T) = h( x, t) (6.59) 

In other words, the number of independent variables have not been reduced. 
Eqs.(6.56) and (6.57) are now transformed to the following form: 

(6.60) 
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subject to the boundary conditions: 

I(O,r) = ,8(r) ; l(oo,r) = 1(00,0) = 1 (6.61a, b, c) 

where the primes in Eq.(6.60) represent differentiation with respect to ~. 
There are some advantages to using the above form, Eq.(6.60). The 

primary advantage is that the starting process is very simple. At r=O all 
dependency on r is removed, leaving only an ordinary differential equation 
to be solved. Often, this equation is a similarity representation for which 
the solutions are known. For r greater than 0, non-similar solutions can be 
obtained by applying "successive corrections" to the similarity solutions. 

Eqs.(6.60) and (6.61) can now be solved numerically as follows: As a 
first step, the derivative in the r-direction is replaced by a finite difference 
approximation 

al In - In-l 
ar = Ar (6.62) 

The function 1 and its ~ are replaced by averages in the following manner: 

~ [(Jnln" + Un')2 + ~dln')) + (In-l/,!-1 + (1n_l)2 

1 (' ))] (In - In-l) +2~ In - 1 = Tn - 1/ 2 Ar (6.63) 

where In refers to 1 at time r, and In-1 to time r - AT. 
Rewriting Eq.(6.63) after some rearrangement, we obtain 

(6.64a) 

where 

(6.64b) 

and 

(6.64c) 

The right hand side of Eq.(6.64a), which is a recursion scheme, is known. 
By letting n=0,1,2, ..... ,etc., in Eq.(6.64a},a sequence of equations for the 
solution of lo,h,h, ....... ,etc.,and their derivatives can be obtained. 

The boundary conditions can correspondingly be written as 

In(T,O) = ,8(r) ; In(T, 00) = 1 (6.65) 

The solution of Eq.(6.60) subject to boundary conditions, Eq.{6.61}, can 
be obtained by the series 

(6.66) 
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where the first term on the right-side represents the similar term and the 
rest of the series show deviation from similarity. Alternatively, Eqs.(6.64) 
and (6.65) can be solved by numerical methods such as quasilinearization lO. 

Consider the variations of .8(r), 

( a) .8 (r) = 1 + b sin( 2:. ~ ) 
TO 2 

r$ro (6.67a) 

=l+b T> TO (6.67b) 

( b) .8(T} = 1+ b sin(':'~} 
TO 2 

T~O (6.68) 

At T=O, Eq.(6.60) becomes 

lot! + (/0)2 + ~~/o = ° (6.69) 

An inspection of the initial conditions shows that the solution is 

/o(O,d = 1 ; 10 = 10' = ° 
Setting n=l in Eq.(6.64) , the recursion scheme can be initiated. The nu­
merical solution is plotted in Figure 6.5. 

0.6 

0.4 

0.2 
-f' (1:,0) I 0.0 a 

-0.2 

-04 

-0.6 

60 - t 

Fig. 6.5 Plot off'(r,O) vs T 

Example 6.6 Natural Convection Over Non-isothermal Plate 

The non-similar problem of natural convection boundary layer flow 
over a semi-infinite flat plate (see Figure 6.6) is considered as a second 
example to illustrate the use of the pseudo-similarity transformation. 
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The governing differential equations for the solution of natural con­
vection flow past a semi·infinite vertical flat plate with an arbitrary wall 
temperature, T w (x), can be written in a non-dimensional form as 

ail afJ - + - = 0 (continuity) 
ax ay 

ail ail a 2 il 
il ax + fJ ay = ay2 + Sw(x)O (momentum) 

il[ao +Odln[Sw(x)l]+fJ aO = ~a20 (energy) 
ax dx ay Pr ay2 

The boundary conditons are 

y=O: il=O, fJ=fJw(x); 0=1 

y-oo : il = 0 , 0 = 0 

(6.70a) 

(6.70b) 

(6.70c) 

(6.71a) 

(6.71b) 

The dimensionless quantities in Eqs.(6.70) and (6.71) are related to their 
corresponding physical variables through the following relationships: 

_ x _ y 'If - u _ v - v 'If x = - , y = -V.rtf , U = - , v = - , v = -y.rte 
L L Uc Uc Uc 

x 

Tw (x) T 

"---------y 

Fig. 6.6 Schematic Sketch of the Plate 
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L and Tr are reference length and temperature, respectively; x and y are 
the coordinates parallel and perpendicular to the plate, respectively; Re is 
the Reynolds number; f3 is the bulk modulus and subscripts rand 00 refer 
to the reference and mainstream conditions, respectively. 

Next, the following pseudo-similarity transformation will be introduced 
for the non-similar problem description: 

1/J 
l(e,'7) = XS/ 4Sw (x)l/4 

g(e,'7) = & 

where the stream function is defined by: 

_ a1/J _ a1/J 
u=- and v=--ay ax 

Eqs.(6.70) then transform into 

I" + (3 + :(e) )/1' _ (1 + :W )(1)2 + 9 

= e (I a I' _I' a 1 ) ae ae 
~g" + 3 + PW Ig' - pwl 9 
Pr 4 

= e(lag _ ,al ) ae 9 ae 
The boundary conditions are transformed to: 

'7 = ° : /(e,O) = ° ; g(e,O) = 1 

dl [3+p(e)]/= _MW 
de + 4e e 

'7~00 : I(e, 00) = 0; g(e, 00) = ° 

(6.72) 

(6.73) 

(6.74a) 

(6.74b) 

(6.75) 

where the temperature and the mass transfer functions are defined as 

(6.76a) 

and 

(6.76b) 
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The primes denote differentiation with respect to '1. Eqs.(6.74) are in a. 
general form. They are for laminar natural convection flows over a semi­
infinite plate with arbitrary wall temperature and surface mass transfer. 
When P( e) and M( e) are constants,i.e., 

e dSw(e) _ d - [ e ] 1/4 - f3 
Sw(e) ~ - a an Vw Sw(e) -

the wall temperature and surface mass transfer distributions are given by: 

(6.77) 

The problem description now becomes similar and the right-hand sides of 
Eq.(6.74) becomes zero, since for this case, both I and g are independent 
of e. 

Again, the solution can be obtained by expressing I and g as follows: 

I( '1 J e) = 10 ('1) + ell ('1) + e h ('1) + .... . 

g('1,e) = go('1) + egdr,) + eg2('1) + .... . 

Alternately, Eqs.(6.74) and (6.75) can be solved by numerical procedures. 

Example 6.7 Pseudoplastic Non-Newtonian Flow Near a Moving Plate 12 

The Ostwald-de-Waele model for pseudoplastic non-Newtonian flow 
can be written as 

_ ,aV"',n-l aV", 
Tz,,--m~ ~ . uy uy 

(6.78) 

where T",y is the shear stress, v'" is the velocity along the x axis at a distance 
of y from the wall surface, m and n are constants of the pseudoplastic fluid. 

The equation of motion for the system is given by 

o v'" OT",,, p-=--' ot oy (6.79) 

where p is the density of the fluid. Combining Eqs.(6.78) and (6.79), the 
nonlinear partial differential equation for the velocity distribution can be 
written as 

o v'" 0 ( oVz)n p-=cm- c-ot oy oy (6.80) 

where 

c =-1 when 
o V'" 
-<0 oy 

c=1 when 
o V'" 
->0 oy 
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The boundary conditions for the problem are given by 

vz(O,t) = vo¢(t) j t/z(oo,t) = ° (6.81) 

The initial condition is given by 

vz(y,O) = ° (6.81c) 

The prescription of an arbitrary ¢(t) in Eq.(6.81c) would prevent invariance 
of the problem as described in Eqs.(6.80) and (6.81), and therefore, the 
solution would be non-similar. 

We now introduce the non-dimensional variables 

- _ Vz . -t- (Pv5)l/n t . - _ ( P )l/n Vz - , - , y - y 
Vo m mvn 2 o 

The pseudo-similarity transformation can be written as 

(6.82) 

where 
- y 

T=tj ~=tl/(n+l) 

Eqs.(6.80) and (6.81) become: 

c¢n-l[(c/)n]' + _1_d - P(r)J = TaaJ (6.83) 
n+1 T 

where 

P(T} = ::( d4» 
¢> dr 

(6.83) 

and the boundary conditions are: 

!(O,T) = 1 j J(oo,T) = 0 (6.84a, b) 

When T=O, the solution is similar. For T greater than zero, solutions 
can be obtained as described earlier in this chapter. 

6.4 Similarity Solutions as Asymptotic Limits of the Non-Similar Problem 
Description 

Similarity solutions resulting from invariance under dimensional and 
affine groups of transformations are quite often of interest, because they are 
limits that are asymptotically approached by solutions of the more general 
problems that are non-similar. The closer the initial condition is to the 
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"limiting solution", the earlier will the non-similar problem approach the 
similar regime. 

The basic nature of the asymptotic behavior of a solution can be best 
illustrated by using the example of linear heat conduction again, for which 
the initial temperature distribution T(x,O)=/ (x) along the x axis and the 
boundary description T(u,t)=h(t) is given. The problem statement is as 
follows: 

a a2 
(at - a.:z:2)T(x,t) = q(x,t) 

(-00 < x < 00 ; t> 0) 

T(x,O) = !(x) ; T(u,O) = h(t) 

h( t) is the temperature prescribed at the boundary surface,x=u. 

(6.85) 

(6.86a, b) 

Using similarity techniques, the Green's function g(x,t !Xo, to) can be 
determined. The general solution to the overall problem can be written 

T(x, t) = rt roo q(xo, to)g(x, t!Xo, to)dXod~ 
10 1-00 

+ !_:/(Xo)g(x, t!Xo, to)dXo 

_ rt d~ r ag(x, t!Xo, to) h(~)dSo 
10 1(1 an 

We will further stipulate that h( t}=O. IT 

q(x,t) = 5(x- Xo)5(t), 

the Green's function g(x, t!Xo,O) can be written as [see Eq.(6.32}] 

(6.87) 

(6.88) 

H( t) is the Heaviside function. Eq.(6.87} can therefore be written as 

H(t}jOO (x-Xo}2 
T(x,t) = .r.::;. /(xo)exp( - )d.:z:o 

v41rt -00 4t 
(6.89) 

We will now consider the behavior of the temperature as t ..... oo. Expanding 
the integrand, Eq.(6.89) in a power series: 

H(t} JOO r 2xxo x6 T(x,t) = . r.::;. (J(xo)exp( - - + - - -)d.:z:o 
v 41rt -00 4t 4t 4t 

H( t) roo _,2 XXo 4r x5 
= V41ri1-00 e /(xo)[(l + 2t + 2(4tp) 
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·(1- ~)ldZo (6.90) 

Simplifying Eq.(6.90), the following expression can be obtained 

H(t) 2 JOO ~ JOO T(x,t) = . ~e-' [ f(Zo)dx+ . r.. Zof(Zo)dZo 
v411't -00 v t -00 

2~2 - 1JOO + xU(xo)dZo + .... ] + .... 
4t -00 

(6.91) 

where ~ = x/(2Vi) is the similarity variable. 
Eq.(6.91) can be seen to be a sum of similarity terms in which the 

powers of the inverse time increase by 1/2 with each successive term, and 
the coefficients are expressed in terms of successive moments of the initial 
temperature distribution. In the limit t-+oo, only the first term of Eq.(6.91) 
remains. This corresponds to the concentrated source solution as expressed 
by Eq.(6.88). The subsequent terms in the expansion characterize the dif­
ference between the actual and limiting solution. 

Eq.(6.91) can be expressed in a different form as follows: 

1fJ(d T(x, t) = T,im (l + Vi + ...... ) (6.f)2) 

where 

and 

The asymptotic validity appears to exist for invariance under dimen­
sional or affine groups of transformations. The resulting similarity solutions 
are often referred to as "self-similar solutions" 14 (see section 11.5). 

6.5 Summary 

When invariance of a set of partial differential equations under a group 
of transformation cannot be invoked either partially or entirely, then a non­
similar representation exists. In this chapter, some methods for obtaining 
non-similar solutions from similarity solutions that have been examined are: 

(a) superposition of similarity solutions 
(b) fundamental solutions 
(c) pseudo-similarity solutions 
Similarity solutions obtained by the invocation of invariance under an 

affine or a dimensional group have been shown to be asymptotic limits of 
the nOll-similar problem description. 
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Chapter '1 

MOVING BOUNDARY PROBLEMS GOVERNED BY 
PARABOLIC EQUATIONS 

7.0 Introduction 

In order to carry out similarity analysis of moving boundary problems 
governed by parabolic partial differential equations, it is necessary to ascer­
tain whether the speed of propagation of the moving boundary is infinite 
or finite. This can usually be accomplished by carefully investigating the 
physical formulation of the boundary value problem. For the purpose of 
similarity analysis, such problems can be classified into (1) problems that 
involve a change of phase, and (2) problems without a change of phase. It 
will be seen that in boundary value problems with a change of phase, the 
moving boundary would advance with a finite speed of propagation. How­
ever, the moving boundary could propagate with either infinite or finite 
speed in problems where no phase change is involved. 

The classification of a second order quasilinear partial differential equa­
tion will be briefly reviewed. Consider a boundary value problem that is 
described by an equation with a dependent variable, u, and independent 
variables, x and t, ·such that 

AUtt + BUrt + OUzz + D = 0 (7.1) 

where A,B,O and D are functions of x,t,u,u:e and Ut. Eq.{7.1) is called 
quasilinear because it is linear in the derivative of the highest order. The 
notion of characteristics could be introduced as the loci of possible small 
discontinuities. For Eq.(7.1}, two families of characteristics can be defined 
as follows: 

(dx) = B + vi B2 - 4AC 
dt 1 2A 

(7.2a) 

(7.2b) 

Depending on the values of the functions A, B, C and D, the classifi­
cation criteria can be described as in the table below: 

Eq. Type (B2 - 4AC) Char. Curves 

Parabolic =0 1 real family 

Hyperbolic >0 2 real families 

Elliptic <0 2 imaginary 
families 
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Since A, B and G are, in general, variables which can take on different 
values in different parts of the region, Eq.(7.1} may be hyperbolic in some 
parts, parabolic or elliptic in others. 

7.1 Problems With Phase Change 

The moving boundary for boundary value problems that involve a 
phase change propagate at a finite speed. The speed of propagation can 
usually be determined by applying some form of conservation relationship 
at the moving boundary. In this section, the well known problem of one­
dimensional freezing of a liquid is used for the purpose of illustration. The 
exact solution to this classical problem is referred to as Neumann's solution. 

The problem considered is one in which a semi-infinite region is held 
at an initial constant temperature, To. The temperature of the surface is 
suddenly dropped to T" and held constant thereafter(see Figure 7.1). It is 
assumed that,initially,the medium is in a liquid state, To > T, ,where To is 
the initial temperature and T, is the surface temperature. 

SOLID REGION 
I 

LIQUID REGION 
II 

x = 0 

MOVING BOUNDARY --------

x 

Fig. 7.1 Phase Change Problem 

The boundary value problem can be formulated as follows: 

The boundary conditions are 

(7.3) 

(7.4) 

C\(l and C\(2 are the thermal diffusivities in the frozen and unfrozen zones. 
The position of the freezing interface is a function of time, and the temper­
ature at. this location for the liquid as well as the solid is equal to the fusion 
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temperature, T,. At the moving boundary, the heat balance equation can 
be expressed as follows: 

(7.Sa) 

and 
(7.56 ) 

where Kl and K2 are the thermal conductivities in the frozen and unfrozen 
zones,p is the mass density and L is the latent heat of fusion(mass basis). 

The solution to this problem can be obtained by using the similarity 
transformation 

X 

~l= 2~ (7.6) 

For the frozen region, the resulting ordinary differential equation is 

(7.7) 

The solution for Eq.(7.7), using the condition Tl (O,t)= T. is 

Tl (x, t) = T. + A er/(~d (7.8) 

Similarly, for the liquid region 

(7.9) 

where erf( ) is the error function. 
Equality of temperature of the solid and the liquid at the interface 

gives 
x X 

A er/( . ;:::-:;) = To - B er/c( . ~) = T, (7.10) 
2yalt 2y a2 

where erfc( )=1-erf( ). 
Eq.(7.10} can only be satisfied if 

X _ ~ = "Y = constant 2y a 1 t 

Therefore, X( t} = 2~ would describe the movement of the interface 
provided "Y is known. 

The constant ,"Y , can be determined by using the heat balance equation 
at the interface, which takes the form 

KdK2~(To - T,)exp(-al/a2h2 

(T, - T.}er/chv'ada2) 
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(7.1:1.) 

where Cl is the specific heat of ice. 
The original moving boundary description becomes a fixed boundary 

description in the similarity coordinate. The rate of movement of the in­
terface varies with time, i.e., 

. dX( t) 1VOl 
propagatton speed = ---;It = vii (7.12) 

For any time,t > 0, the speed of propagation of the interface is finite. 
The term "change of phase" is used to describe not only freezing of 

liquids, but also to include any physical situation where a moving boundary 
divides a region under consideration into portions with distinct properties. 
For example, the problem of impact of viscoplastic rod which has differ­
ent properties during loading and unloading, would give rise to a moving 
boundary that separates the loading and unloading regions. 

7.2 Problems Without Phase Change 

Similarity analysis of parabolic partial differential equations that arise 
from physical formulations that do not involve a change of phase, requires 
careful consideration with regard to the location of the moving boundary 
in the similarity coordinate. Two distinct possibilities should be considered 
in such cases: 

(1) existence of a sharp moving boundary which 
propagates with a finite speed, and 

(2) instantaneous propagation of the moving boundary. 
For the purpose of illustration, consider the nonlinear heat equation of 

the form a aT aT 
ax[K( T) a;l- at = Q(x, t) (7.13) 

where K (T) is the nonlinear property, T is the dependent variable and 
Q(x, t) is the heat source. In the present discussion, we assume that 
Q(x, t) = O. 

Eq.(7.13) arises in certain diverse physical situation in science and 
engineering 1: 

(a) the transport of thermal energy by radiation in a completely ionized 
gas. The coefficient K (T) is equal Ko Tn, where n is equal to 6.5, and 
in regions of multiply ionized gases n varies between 4.5 and 5.5; 

(b) electron heat conduction in plasma, where the coefficient of electron 
thermal diffusivity K( T) is equal to f3 T 5/ 2 , 

(c) ordinary nonlinear heat conduction phenomena where the thermal con­
ductivity depends on temperature, and 
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(d) the electric transmission in cables coated with resistive paints that 
exhibit nonlinear characteristics. T in Eq.(7.13) is replaced by the 
electric field variable E, and and K(E) = [Elr(E)]'lc. c is the ca­
pacitance per unit length and r( E) is the resistance per unit length. 
In certain high voltage applications, conducting cables are sheathed 
in cylinders of capacitive materials with resistive paints which ex­
hibit nonlinear characteristics. An empirical formula can be written as 
r(E) = ro(Eol E)n. The solution to this problem is one which describes 
what occurs when a voltage is applied at the end of the transmission 
line when t = O. 

T 

T-Oj K(T)-Oj ~~ IS NON-ZERO 

OL-----+----+------+-------
xfl Xf2 Xf3 X 

Fig. 7.2 Propagation With a Sharp 
Moving Boundary 

For further discussions, the problem of transport of thermal energy 
by radiation in a completely ionized gas will be considered. The radiation 
phenomena comes into effect when temperatures of the order of tens and 
hundreds of thousands of degrees are encountered. Since K( T) is equal to 
KoTn in Eq.(7.13)' as T-+O, the heat flux q(x,t)=K(T)(aTlax)-+o. This 
implies that q(x,t) -+0 for a nonvanishing gradient,aTlax. IT we assume 
that a one-dimensional region ahead of the heat source is initially at zero 
degrees, then a sharp moving boundary can be expected since aT I a x need 
not vanish at the moving boundary. With respect to Figure 7.2,X/l, X/2 
and XI3 are successive locations of the moving boundary with the passage 
of time, for the case of non-vanishing gradient. In some cases,both K( T) 
and a Tlax can be simultaneously zero at the moving boundary(see Figure 
7.3). 

Since K( T)=Kl (constant) as T approaches zero, Eq.(7.13) becomes 
linear. For gases, Kl equals to la v/3, where la is the molecular mean free 
path, and v is the mean thermal speed. The heat flux q(x, t) will vanish only 
when the gradient aT I a x approaches to zero. The decay of temperature 
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with x will be asymptotic and the propagation of the thermal wave can be 
considered to be instantaneous. The variation of temperature with distance 
for different times is shown in Figure 7.4. 

T 

° 

T 

K(T) = 1[: 0 
~x 

Fig. 7.3 Propaga.tion With Vanishing 
Temperature Gradient 

T-O, K(T) = CONSTANT 

Fig. 7.4 Instantaneous Thermal Propagation 

IT the heat source is given by 

Q(x, t) = qo5(x)5(t), 

then we have 
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It is also seen that if 

then 
as T-O , K(T)-Kl 

In a situation such as this, the propagation would be instantaneous since 
aT lax equals to zero for vanishing flux. 

The existence of a sharp moving boundary can usually be determined 
by studying the moving boundary condition, along with the overall physical 
basis for the problem. 
Example 7.1 : Thermal Waves from an Instantaneous Plane Source2 

This example further clarifies foregoing discussions on aspects relating 
to the propagation of sharp moving boundaries in problems that do not 
involve a phase-change. The propagation of heat from an instantaneous 
plane source in an initially cool infinite domain is considered. Heat prop­
agates in both directions off the plane x = 0 where an energy E per unit 
area of the surface is released. 

The nonlinear heat conduction equation is 

The conservation of energy call be expressed as 

rOO T(x, t)dx = Q 
1-00 

(7.15) 

(7.16) 

We use the Hellums-Churchill procedure to determine the similarity trans­
formation. Defining 

we have 

T 
T=­

To 
x x= -

Xa 

_ t 
t= -

i<l 

Q _ aToto 
11'el-~ 11'bl =--

ToXa 

For minimum parametric description, we set 

Therefore, 

11'e1=11'e2=1 
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The similarity transformation can be written as 

Eq.(7.15) can be transformed into the following ordinary differential 
equation: 

d dF dF 
(n+ 2)-[Fn-] + ~- + F = 0 

~ ~ ~ 
(7.19) 

The boundary conditions are 

F(oo) = 0 and F'(O) = 0 (by virtue of symmetry) 

Integrating Eq.(7.19) once, 

ndF ~F 
F -+--=C1 

~ (n+ 2) 
(7.20) 

Using the boundary condition 1(0) = 0, the constant of integration 
C1 = O. Integrating Eq.(7.20), we get 

(7.21) 

We have to allow for the possibility of the existence of a sharp mov­
ing boundary, since K( T) = a: Tn, and the heat flux vanishes with a non­
vanishing gradient as T -0. Therefore, the condition f( (0) = 0 is replaced 
by f(~o) = 0, where ~o locates the moving boundary. Using this condition, 
C2 is equal to ~5!2( n + 2). Therefore,the solution becomes 

and 

f(d = ° for ~ > ~o (7.22b) 

The value of ~o can be determined from the conservation of energy 
expression: 1+(0 

-(0 F(d~ = 1 (7.23) 

Substituting Eq.(7.22) into Eq.(7.23) and simplifying, 

where r( ) is the Gamma function. 

132 



www.manaraa.com

The motion of the thermal front can be described by setting ~ = ~o, 

such that 
1 

X(t) = ~o(aQt);;-:;:-; (7.25) 

When the exponent n is equal to zero, we have the linear heat equation. 
Using Eq.(7.24), 

2 
ao = --00 

y'n 

This confirms our earlier discussions in which it had been stated that, for 
K( T) is a constant, instantaneous propagation would result. The solution 
for the linear equation is 

or 

Q 
T(x, t) = . ~[F(s")ln-o 

vat 

T(x, t) = _Q-e -%2 /4o:t 
J41!"at 

Example 7.f : Multidimensional Diffusion Equation 3 

(7.26a) 

(7.26b) 

Consider the m-dimensional equation with spherical symmetry for the 
diffusion process 

_1_ ~ [ rm -1 D( c) a c] = a c 
rm - 1 ar ar at (7.27) 

c is the concentration, and we assume that D(c)=c n • The auxiliary condi­
tions for t > ° are 

c(O,t)=t J3 ; c(r,O) =0 ; c(oo,t)=O (7.28) 

The similarity transformation can be derived by the Birkhoff-Morgan ap­
proach using the one-parameter group (G): 

For invariance, 

Therefore, we get: 

In Eq.(7.29}, 

133 

r 
a= -

t" 
(7.29) 



www.manaraa.com

Substituting Eq.(7.29} into Eq.(7.27)' we get 

(~m-l/r)' = q~m-l/_ 8~m/ (7.30) 

IT 8 = 1/ (nm + 2) ,Eq.(7.30) can be integrated into the following form: 

(7.31) 

Integrating again, we have 

(7.32) 

where Kl is a constant of integration. The transformed boundary conditions 
are: 

1(0) = 1 and 1(00) = 0 

Here again, the question of whether or not a sharp moving boundary (~ = 
~o) would exist, can be resolved through the physics of the problem. Since 
D( e) = en, the flux is en ex. Assuming zero concentration ahead of the 
moving boundary, the flux will vanish for either a non-zero or vanishing 
gradient. 

Eq.(7.32) can be simplified by substituting 

into the following form: 

(7.33) 

The boundary conditions would be 

G(O) = 1 G(~o) = 1 (7.34) 

In order to evaluate K1 , c' (~o) also should be specified. If c' (~o) = 0, then 
Eq.(7.33) can be integrated as 

(7.35) 

Applying the condition G(O) = 1, we have 

~o = [2(nm+ 2)]1/2 
n 

(7.36) 

The expression for c(r, t) can now be written as 

(7.37) 
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There is another important class of problems for which the equations 
and the boundary conditions are invariant under a group of translations. 
Such an invariance leads to "uniform propagation regimes" or "traveling 
wave solutions" in which the moving boundary propagates with a finite 
speed. As an example, consider the "power-law" diffusion equation 4 

(7.38) 

Eq.(7.38) is invariant under a group of translations 

G: x = x + €a ; t = t + €f3 ; U = u 

where € is the parameter of transformation. 
The similarity variable is given by the integrating of the subsystem 

dx dt du 
-=-=-
a f3 0 

(7.39) 

so that a 
u=f(d, where ~=X-At and A="$ (7.40) 

It must be determined what form f should take so that f(~) is a solution 
to Eq.(7.38). Upon substitution of Eq.(7.40} into Eq.(7.38}, we find that f 
must satisfy the differential equation ' 

(f)" + A/ = 0 (7.41) 

where prime indicates differentiation with the similarity variable,~. 
Integrating Eq.(7.41} once, 

(7.42) 

where A is a constant. Integrating Eq.(7.42) for n > 0, the following implicit 
solution can be found 4 : 

2:n- z (A/A)iun-l-i (A)n-ll ( A) A (~' f3) 
~---"---.-+ - nu-- =-I.II-X+ 

i=O n - 1 - J A A n 
(7.43) 

where A is non-zero and B is another constant. If A = 0, the integration 
generates the explicit form 

A(n- 1) 1 

u(x,t) = [ (At- x+ B)]~ 
n 

(7.44) 

for n;ll. However,when n is equal to 1, 

u(x,t) = B exp[-A(X-At)] (7.45) 
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It can therefore be seen that parabolic equations can have a sharp 
traveling wave front. 

More problems of the traveling wave type will be considered in chapter 
8. 

7.3 Summary 

In this chapter, two types of physical problems were identified with 
regard to similarity analysis of parabolic differential equations: 

(a) problems involving a phase change, and 
(b) problems without a phase change. 
In problems in which there is a change of phase, the moving boundary 

propagates at a finite speed. Similarity analysis is carried out for each of 
the phases, and physical compatibility at the moving boundary is taken 
into account. 

In problems without phase change, the propagation can be instanta­
neous for certain situations. In other situations, however, moving bound­
aries could exist that propagate with a finite propagation speed. The pro­
cess of determining the propagation speed, and whether or not a sharp 
boundary would exist will depend on the physical nature of the problem. 
The propagation of a traveling wave in uniform regimes can be discovered 
by invoking invariance under a group of translations. 
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Chapter 8 

SIMILAlUTY ANALYSIS OF WAVE PROPAGATION PROBLEMS 

B.O General 

A wave is any recognizable feature of disturbance that is transferred 
from one part of the medium to another with a recognizable velocity of 
propagation. There are two main classes of wave motion that can arise 
in physical situations: (1) propagation of waves along the characteris­
tics of the governing hyperbolic partial differential equation, and (2) non­
characteristic wave propagation for which the wave does not move along the 
characteristics. In this chapter, we will discuss different aspects of similarity 
analysis and the role of group invariance, as they relate to wave-propagation 
problems. 

In chapter 7, the classification of a second order quasilinear partial 
differential equation was reviewed. In the analysis of wave propagation 
problems, the equations can also be expressed in the first order form: 

(8.1) 

where U and N are (n x 1) column vectors, and M is a (n x n) square 
matrix. The eigen values )..l jl=l, ... ,n of the equation, det(M-)..I)=O, are real 
and distinct for totally hyperbolic systems. The characteristics of Eq.(8.1) 
are given by 

d : (~:)e =)..e 

Consider, as an example, the linear wave equation 

Based on the form as described in Eq.(7.1), 

B2 - 4AC = 4')'2 

(8.2) 

(8.3) 

which is greater than zero. Therefore, the equation is hyperbolic. The 
characteristics are given by the following: 

)..(1) = (dx) = ";B2 - 4AC = 
dt 1 2A +')' 

(8.4a) 

)..(2) = (dx) = _ v'B2 -4AC =_')' 

dt 2 2A 
(8.4b) 

Alternatively, Eq.(B.3) can be rewritten in the first order form,Eq.(8.1), by 
letting Ux and Ut equal to v and w, respectively. Then, 

(8.5a) 
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(8.5b) 

IT the vector 

then Eq.(8.3) can be written as 

The chara.cteristics are obtained by solving 

( -A 
det(M - AI) = 2 

-"{ 
-1) =0 -A (8.6) 

Therefore, the A'S are given by 

A(l) = +"{ A(2) = -1 

which is the same result as Eq.(8.4). 
For more information of equation classification, readers are referred to 

references [1] and [2]. 

8.1 Propagation Along Characteristics 

A great number of wave propagation problems are governed by the 
quasilin&r hyperbolic equation 

(8.7) 

The simplest model for wave propagation is expressible in the form 

Pt + m(p)p., = 0 (8.8) 

where m(p} is a given function of the dependent variable. The characteristic 
is given by 

dx 
dt = m(p) 

and different values of p would propagate with different speeds, m(p). The 
dependence of m on p produces a typical nonlinear distortion of the wave 
as it propagates. When m' is less than zero, higher values of p propagate 
with slower speeds. However, when m' is greater than zero, higher values 
of p propagate faster than the lower ones. As the distortion progresses, 
the wave would ultimately break, resulting in the formation of a shock *, 

* In the formation of Eq.(8.8), shock waves appear as discontinuities 
in p. The derivation of Eq.(8.8) involves approximations which are 
not strictly correct. For example, in gas dynamics, the corresponding 
approximation relates to the omission of viscous and heat conduction 
effects. 
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as shown in Fig.S.l. Generally speaking, shocks need not propagate along 
the characteristics. The propagation along the characteristics occur for 
0< t < tB, where tB is the time for the breakdown of a wave. When m(p) 
is a constant, then the wave is propagated at a constant speed without 
change of shape along the lines of characteristics. 

PROPAGATION ALONG THE CHARACTERISTICS SHOCK WAVE PROPAGATION 

12 13=IB 14 
I 

!) 

1 
u. 
0 
z 
~UJ 
8~ 
~~ 
UJUJ 
1l::J: 
aJlo-

o 
~X X=XB 

Fig.B.1 The Formation of Shock Waves 

In this section, we will consider the analysis of the hyperbolic type 
equations for 0 < t < tB' It has been shown that the invariance of the 
governing equations for wave propagation problems under a group of trans­
formations leads not only to the similarity transformations, but also to the 
equation's characteristics 3 . This aspect of group invariance is utilized in 
locating the moving boundary in terms of the similarity coordinate. 

The characteristics for Eq.(S.7) can be written as 

dx 
.A = dt = I\; (x, t, u, Uz , ut} (8.9) 

We will now derive the similarity characteristic relationship which will es­
sentially give the additional condition at the wave front that would be 
required to solve the similarity problem. 

Case (1): tP = tP(x, t) or >. = 1\;1 (x, t) 
Integrating along the characteristics, the position of the wave front can 

be expressed as 

(8.10) 

where x61 ) is a constant of integration. If ~1 =~1 (x, t) is the similarity 
variable, then 

( ) (1) 
~1 x, t = ~w (8.11) 
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would locate the wavefront. ~~) can usually be determined from the equiv­
alence of Eq.(8.10) and (8.11), which is known as the 'similarity character­
istic' relationship. If 

in Eq.(8.7)' then 

(8.12) 

Since X(O)=O, 

2- m 2 .1.±.!!... 
X(t) = (vA*(-));=;;;- t2 - m 

2+ n 
(8.13) 

The similarity variable for Eq.(8.7) with ,p (x, t)=A * xmtn can be writ-
ten as 

:z: 
~dx, t) = tl2+ n )/(2 -m) (8.14) 

The distance to the wavefront X(t) can be obtained from Eq.(8.14)' 

by setting ~1 = ~~). Therefore, 

(8.15) 

From the equivalence of Eqs.(8.13) and (8.15) the similarity characteristic 
relationship can be obtained as 

( ) 1.*2 - m 2 
~~~ = (vA*--)~. 

2+n 

~ ~l is the similarity coordinate at the wavefront. 

Case (2) : 1/J = ,p (x, t, tL, tL." ud 

Therefore, the characteristics are given by 

(8.16) 

(8.17) 

Integration of Eq.(8.17) is not possible since there is a dependence on 
tL,Ux,Ut, which are unknowns. However, by introducing the similarity trans­
formation for Eq.(8.7) in conjunction with Eq.(8.17)' i.e., 

U(x, t) = f3(x, t)F(~2L 

Eq. ( 8 .17) can be integrated as 
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where ~~) is the similarity coordinate at the wavefront. 
uated by setting X(O)=O. 

Setting the similarity variable equal to ~~), 

( ) (2) 
~2 x, t = ~w 

~2) can be eval-

(8.19) 

From the equivalence of Eqs.(8.18) and (8.19), ~~) can be determined. 

Example 8.1: Nonlinear Wave Motion On a String 

Consider the wave motion on a string with a gravitational force acting 
on a string in the negative axial direction. The equation can be expressed 
as 4 

Utt - xu=: - Uz = 0 

The similarity transformation can be written as 

x 
u( x, t) = ~ f(d where ~ = t,2 

The characteristics are given by 

dx 
- = ±y'x 
dt 

(8.20) 

(8.21) 

(8.22) 

Choosing the positive characteristic and integrating Eq.{8.22), with 
x(O)=O:, 

r: t (1" 
V x - 2 = 0 ; or X t) = 4 t" 

From Eq.(8.21), by setting ~ = ~tD' we get 

(8.23) 

(8.24) 

Comparing Eqs.{8.23) and (8.24), the similarity coordinate at the wavefront 
is ~w=1/4. 

Example8.2 Rainfall Runoff in Sloping Areas 

The physical problem considered here is one of a buildup of laminar 
or turbulent flow over a sloping areas. Consider an impermeable surface 
of length L, slope S (approximately equal to sin(O)) and of a unit width 
perpendicular to the plane as shown in Fig.8.2. Taking A as the origin, the 
two-dimensional flow will be examined. The continuity equation takes the 
form 

aq ah 
-+-=vo ax at 
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where q is the flow, h is the height of the water surface above the slope 
surface, and tlo is the velocity of rainfall. 

y 

CONSTANT RATE OF RAINFALL(Vo) 

1IIlllillilii 

x 

Fig.8.2 Rainfall On a Sloping Area 

The flow and depth are related by the equation 

(8.26) 

where a = gS/3v and m=3 for laminar fiow;g is the acceleration due to 
gravity and v is the kinematic viscosity. For turbulent flow, 

3 
m=-

2 

and C is a constant. 
Eqs.(8.25) and (8.26) constitute a kinematic wave problem, and can 

be combined as 
hm - 1 ah ah 

am -+-= tlo ax at 
The boundary condition is 

h(O, t) = 0 

At the moving boundary, 

h(X( t), t) = hmM = tlo t 

The similarity transformation is given by 

x 
h( x, t) = tlO tf(~) where ~ = ---­

amtlom-1tm 
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The ordinary differential equation obtained by substituting Eq.(8.29) into 
Eq.(8.27) is 

(8.30) 

with boundary condition 1(0)=0. 
The moving boundary is obtained by setting ~ = ~w, and can be written 
as 

X(t) = ~wamv;--ltm 

The characteristic of Eq.(8.27) is 

dX = mahm-1 = ma[Votl(~w)lm-l 
dt 

Integrating Eq.(8.32) and comparing with Eq.(8.31),we get 

1 
~w =-m 

Therefore, the propagation of the moving boundary is described by 

X(t) = av;--ltm 

The solution to Eq.(8.30) can be written as 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

Example 8 .9: Impact of a Longitudinal Rod With a Nonlinear Stress Strain 
Relationship 3 

4I this example, one-dimensional deformation due to impact of a long 
thin rod with nonlinear stress strain relationship is considered. The govern­
ing equations for small deformations within the framework of the uniaxial 
theory of thin rods are as follows: 

au av 
-=-p-ax at 
ae av 
at = - ax 
e= (~V 

IJ. 

(8.35a) 

(8.35b) 

(8.35e) 

IJ.,p, q are material constants, x is the Lagrangian space coordinate,t is 
time,u and e are normal compressive stress and nominal compressive strain 
respectively, v is the particle velocity and u is the particle displacement. 

au au 
e=-- and v=-ax at 
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The auxiliary conditions for the problem are: 

(0 ) _ au(o, t) _ .i> (C ) 
v ,t - at - vct"' Vc > 0; u is a parameter 

Combining Eqs.(8.38), we have 

(8.36a) 

The moving boundary is given by 

u(D( t), t) = 0 (8.36b) 

where x=D( t) locates the wavefront. The initial conditions are 

u(x,O) = au~~o) = 0 (8.36c) 

The similarity transformation can be written as 

u( x, t) = Vc (+1 F(d (8.37) 

where 
kx pq -L 1 l::.i. 

S- = - ; k = (_)q+1 (-) 1+q 
tm JL Vc 

(i + 8) + q( 1 - 8) 
m = ~-"----"-'--~ 

l+q 

The similarity representation can be found to be 

-8(8 + l)F = 0 (8.38a) 

with 
1 

F(O) = -c ; F(S-u,) = 0 
1+u 

(8.38b, c) 

where S-w is the value of the sinlilarity variable at the wavefront. Setting 
S- = S-Wl the wavefront description can be written as 

The characteristic is given by 

dx ffq au l::.i. _ = _( __ ) 2q 

dt pq ax 
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Introducing Eq.(S.37) into Eq.(S.39), integrating and then comparing with 
Eq.(S.39a), 

[-F' (~w) Jll- q)/2q 

~w = 1+8(1- q)/(1+ q) (S.40) 

Eq.(S.40) should be satisfied at the wavefront. The reader may also note 
that the singularity of Eq.(8.3Ba) occurs when 

which leads to the coordinate of the propagating discontinuity as expressed 
by Eq.(B.40). 

Propagation of waves along the characteristics can occur in certain 
traveling-wave problems. The similarity representation would be a result 
of invariance of the governing equations and auxiliary conditions under a 
group of transformations: 

G : x = x + €a ; t = t + €{3 ; U = u 

The traveling wave similarity solution can be written as 

u = F(d ; ~ = x - At where A = ~ 
f3 

(B.41) 

is the speed of propagation of the wave. 

Example8 .4: The Linear Wave Equation 

The linear wave equation can be written as 

(B.42) 

c is the velocity of propagation of the wave. 
Eq.(8.42) is invariant under Eq.(B.41)' and the similarity represent a-

tion is 
(B.43) 

where A = ±c are the speeds of propagation of traveling waves. 

B.2 Non-Characteristic Propagation: Shock Waves 

In section B.1, the breakdown of a smooth wave propagating along the 
characteristics into shocks had been discussed. Shock propagation is gen­
erally a non-characteristic type of propagation. The breakdown of waves 
into shocks can result from certain forms of constitutive relationships, or 
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it can result from high impact or high energy release in a medium. In­
stead of using the similarity characteristic relationship, the so-called "jump 
conditions" have to be satisfied at the shock front. 

For the case of uniaxial rods for which the governing equations have 
been described in section 8.1, Eqs.(8.35a) and (8.35b), the jump conditions 
are obtained from the continuity of displacement and momentum as follows: 

[v] = -e[e] ; ep[v] = -[0'] (8,44a, b) 

where e is the as yet unknown velocity of the shock front, and is equal to: 

c=rU
] p tel 

These relations together with the constitutive equation are sufficient for 
the study o{ shock propagation in thin rods. When the impact velocity is 
high, then the variation of internal energy would be a factor. Eqs.(8.44a) 
and (8,44b) are called the HUgOllOit conditions. The symbol [ ] denotes the 
difference in the variable across the shock front. 

For a compressible fluid, the velocity, pressure,density and tempera­
ture of the fluid are discontinuous across the shock. For an ideal gas, the 
relationships for the variables across the shock are: 

Continuity: Pl Ul = P2U2 

Momentum: Pludul-~) = P2 - Pl 

'Y Pl uf 'Y pz ~ Energy: (-)- + - = (-)-+-
'Y - 1 Pl 2 'Y - 1 P2 2 

(8,45a) 

(B,45b) 

(8,45e) 

where u is the velocity, P is the pressure, and P is density. Subscripts 1 
refers to the values of the variables in front of the shock, and 2 behind the 
shock(Fig.8.3). 

SHOCK FRONT 

Fig. B.3 Shock in a Compressible Media 
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Example8.5 Formation of a Blast Wave by an Intense Explosion 2.6 

When a finite amount of energy is suddenly released in an infinitely 
concentrated form,the resulting motion in the air medium can be deter­
mined by similarity analysis. IT the disturbance is strong enough, the ini­
tial pressure and sound speed of ambient air are negligible compared to the 
pressures and velocities produced in the disturbed flow. 

The equations describing the blast wave phenomena are: 

U 
Pt + up. + p(ur + ,8-) = 0 

r 

1 
Ut + UUr + -Pr = 0 

p 

Pt + UPr - a2 (Pt + uP.) = 0 

(8.46a) 

(8.46b) 

(8.46c) 

P is the density,p is the pressure, U is the radial velocity,r is the radius, t 
is the time, and a is the speed of sound defined as 

a=/¥ 
When f3 equals to 1 the motion is cylindrical, and when ,8 equals to 2 the 
motion is spherical. The total energy, E, which is conserved, can be written 
for ,8 = 2 as: 

(8.47) 

At the shock front, instead of the similarity characteristic relationship 
the jump conditions are utilized as follows: 

2U 
u(R,t) =-

1+1 
(8ASa) 

(8.48b) 

(8.48e) 

where U is the shock velocity,po is the ambient gas density and "I is the 
polytropic exponent. 

The similarity transformation can be obtained as 2.6 

ar 
u(r, t) = - l'(d 

t 

p(r, t) = Po Q(~) 
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(B.4ge) 

where 

We can determine 0 such that R(t)=( Ot)U is the moving boundary. 
Letting 

A = r:;P yep 
the similarity representation can now be written as: 

1 
- V(V -1)(V - -), 

a 

[(V -1)2 _ A2]~A' = [1- (I-a) 1 ]A2 
A 1a V - 1 

1-1 1 1-1 1 +(-) V(V - -) - (-)(,8 + 1) V(V -1) - (V -1)(V - -), 
2 a 2 a 

[(V -1)2 - A2]~Q' = 2[(,8 + 1) V _ (1- a)] A2 
Q 1a (V - 1) 

1 
- V ( V - -) - (,8 + 1) V ( V - 1). 

a 
(S.50a, b, c) 

The velocity of the shock is 

U - dR _ aR _ 2R ------
dt t 5t 

The transformed conditions at the shock front are 

2 1+1 2 
V(I) = 1 + 1 j Q(I) = 1 _ 1 j P(1) = 1 + 1 (8.51) 

The constant C can be obtained from the energy integral, Eq.(8.47). For 
1 = 1.4, ,8=2, the description of the motion for the shock front is 

(8.52) 

We will now examine the characteristics for Eq.(8.46) and relate it to the 
path of the shock front. 
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The characteristics in the r - t plane is given by 

dr - = u±a 
dt 

Since tL and a are given by 

ar ar 
tL = - V(d and a = -Ak), 

t t 

we get 
dr ar 
-d = -[V(~o)±A(~o)l 

t t 

(8.53) 

(8.54) 

where ~o is the similarity variable at the characteristics. Eq.(8.54) can be 
integrated as 

R(t) = Rof IV(~o)±A(~o)1 (8.55) 

where Ro is a constant. 
In terms of the similarity variable,~ = ~o would describe characteristic 

propagation such that 
R(t) = ~o(? f 

Comparing Eqs.(8.55) and (8.56)' 

Ro 
~o = - and V(ao)±A(~o) = 1 COL 

(8.56) 

In general, a is not equal to 2/5, and ~o is different from one. Therefore, 
the shock path and characteristics do not coincide in general (Fig.8A). 

t 

I 
--
------- ----

/' 

----.--......-

o~~------------------------------
-r 

Fig.8A Plot for the Explosion Problem 
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The limiting characteristics appears in the region ahead of the shock. 
It represents the edge of the fold in the (r 1 t) plane in the multivalued 
solution which is replaced by the shock. 

8.3 Non-characteristics Propagation: Uniform Propagation Regime 

In the previous section, similarity analysis of problems involving prop­
agation of shocks was discussed. It was seen that the moving boundary 
does not, in general, propagate along the equation's characteristics. In­
stead of the "similarity characteristic "relationship, the" jump conditions" 
are required to locate the moving boundary. 

The propagation of "traveling waves" is another possible situation, 
where the moving boundary need not propagate along the characteristics, 
especially if the equations are nonlinear. As discussed in section 5.3, trav­
eling wave solutions can be obtained by invoking invariance under a group 
of translations 

G: x = x + €a j t = t + f{3 j U = u 

Invariant solutions can be obtained by solving the subsystem corresponding 
to G,i.e., 

and can be written as: 

u=F(d ; ~=x-).t (8.57) 

where the assumed velocity of propagation). equals to 0.//3. 
The class of solutions,Eq.(8.57), represent waves of permanent, profile 

that propagate at a constant speed and unchanging shape. The reduced or­
dinary differential equation obtained on substituting Eq.(8.57) into a given 
hyperbolic equation, will then represent possible modes of steady propaga­
tion. 

Example8.6: Klein-Gordon Equation 

A mechanical transmission line treated by Scott 7 is modeled by the 
following equation: 

(8.58a) 

Eq.(8.58) is known as the Klein-Gordon equation. 
Scott describes his construction of a mechanical model with rigid pen­

dula attached at close intervals along a stretched wire. Torsional waves 
propagating down the wire obey the wave equation, and the pendula supply 
a restoring force proportional to sin ¢, where ¢ is the angular displacement. 
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Therefore, G{4> )=sin 4>, and Eq.{8.58) which is called the Sine-Gordon equa­
tion can be written as: 

4>= - 4>tt = sin 4> (8.58b) 

Since Eq.(8.58b) is invariant under a group of translations 

G: X=X+fO: ; t= t+f3 ; ({;=<p 

Eq.(8.57) is the required traveling wave similarity solution. Therefore, 

4> = 4>(d and ~ = x- >.t 

Eq.(8.58b) then becomes 

(8.59) 

Two distinct pulse solutions are obtained 8,namely, 

(8.60a) 

and 
(8.60b) 

In the first case, the constant of integration is set equal to + 1, and in 
the second case, -1. IT the integration constant (co) is not equal to ±1,4> 
can be written as an implicit function of the similarity variable,~, given by 

v'1=>.2 =, 1<1> d4> 
o J2(co - cos 4» -

(8.61) 

For the case Co > 1,>' < 1,4> is a monotonically increasing function of ~: 

(8.62) 

where cd x=(cn x}/(dn x} is an elliptic function of modulus "( = 2(co + 1). 
For the second case of interest for which -1 < Co < 1 and >. > 1, 4>(d 

is a periodic function of ~. 

(8.63) 

where sn is an elliptic function of modulus 2"(2 = 1 - Co. 

Example8 .7 Korteweg-de Vries Equation 
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In connection with the study of water waves of permanent profile, the 
Korteweg-de Vries equation arises in the form 2: 

(8.64) 

where rJ is the water surface position, ho locates the bottom,and Co and 'Y 
are defined by 

1 
Co = ~ and 'Y = 6 Co ~ 

Again, Eq.{8.64) is invariant under a group of translations: 

G: x = x + eQ ; t = t + e{3 ; f1 = rJ 

so that a traveling-wave similarity solution can be written as: 

rJ=ho<p{d j ~=x-Ut 

Therefore, the similarity representation is given by 

12111 3, (U )' -hQ<p + -!PIP - - - 1 <P = 0 
6 2 Co 

(8.65) 

This can be integrated to 

1211 3 2 (U ) -h.O!.p +-!.p - --1 IO+ A =O 
6 4 Co 

After multiplying by 10', further integration gives 

where A and B are constants of integration. 
In the special situation when <P and its derivatives become zero as 

~-oo : A = B = 0 

Therefore, Eq.{8.66) may be rewritten as 

It is clear, at least qualitatively, that !.p increases from !.p = 0 at ~ = 00 

and rises to a maximum at !.p = Q. It then drops to I" = 0 at ~ = -00. 
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This is a "solitary wave", the velocity of which depends on the amplitude 
according to the relationship 

U = co(l + ! '70) where '70 = hoD! 
2ho 

The solution of Eq.(8.67) is (see Fig.8.5): 

or in terms of the original variables, 

ip=o 

o 

Fig. 8.5 Solitary Wave 

Example8.8: Elasto-plastic Wave Propagation in a Rod 

For a constitutive relationship described by 

ae 1 au 
at = Eat + 'YJ(u), 

(8.68a) 

(8.68b) 

the equation for one-dimensional wave propagation in a rod is given by 10: 

(8.69) 
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where x is the coordinate along the rod, t is the time, e is strain, (J is the 
overstress, E is the modulus of elasticitY,i is a constant, (Jo is static yield 
stress, and 

~ flE e = ax ; T = act ; c = -; a = f3'Y -
P (Jo 

Eq.(8.69) is invariant under a group of translations, 

G: e = e + EO; 'f = T + Ef3 ; {j = (J, 

so that a traveling wave solution can be written as 

(J=g(s) and S=CT-e (8.70) 

where C is the speed of propagation, equal to oj f3. 
Substituting Eq.(8.70) into Eq.(8.69), the following similarity repre­

sentation results: 

(8.71) 

Integrating Eq.(8.71), we have 

where A is a constant. When c2 < 1, the propagation of waves is non­
characteristic and similar to solitary waves.· 

The solution can be written in the form of a quadrature: 

(8.72) 

The constant A is set equal to zero, and B is another constant. Once the 
form of f(g) is known, Eq.(8.72) can be evaluated. 

8.4 From Translation to Dimensional Group Invariance 

In section 8.3, the traveling wave similarity solutions were discussed. 
The equations are invariant under a group of translations, and the similarity 
solutions are of the form: 

u = u(d ~=x-).t-c (8.73) 

where ). is the propagation speed, and c is a constant. 
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We now make a change of variables as follows: 

x = In{e) ; t = In(r) ; c = In{A) 

Eq.(8.73) can then be written as 

( 
u= U(ArJ 

(8.74) 

(8.75) 

which is the type of similarity variable obtained by dimensional groups. 

Example8.9: Korteweg.de Vries Equation 

We will rewrite the Korteweg.de Vries Equation in a different form: 

tL:=; + tLtLz + Ut = 0 (8.76) 

By making the change of variables as expressed by Eq.{8.74), the 
Korteweg.de Vries equation can be transformed to: 

(8.77) 

Since Eq.{8.77) is a similarity representation of Eq.{8.76), it can be trang. 
formed to an ordinary differential equation in terms of the variable 0 where 

e 0=­
AT>' 

When traveling·wave solutions of the form Eq.(8.73)' have an unknown 
velocity of propagation),the problem basically corresponds to "self·similar 
solutions of the second kind" 11 • ). is determined from the simultaneous 
consideration of the conservation laws and the internal structure of the 
transition regime. More discussion on "self·similar solutions of the first 
and second kind" is presented in section 11.5 of this book. 

8.5 Summary 

In this chapter, similarity analysis of wave propagation problems goy. 
erned by hyperbolic equations was discussed. Two classes of wave motion 
were considered: (I) propagation along the equations' characteristics, and 
(2) non·characteristic propagation. The analysis of the first class of wave 
motion involves the determination of the similarity characteristic relation· 
ship. This relationship essentially represents a singularity in the similarity 
representation. The second class of wave motion arises as a result of shock 
wave propagation and in traveling wave problems. Instead of satisfying the 
similarity characteristic relationship at the wave front, the sa.called "jump 
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conditions" are required for the shock wave propagation problem. The 
traveling wave solution is obtained by invoking invariance under a group of 
translations. 
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Chapter 9 

TRANSFORMATION OF A BOUNDARY VALUE PROBLEM 

TO AN INITIAL VALUE PROBLEM 

9.0 Introduction 

The method for transforming nonlinear boundary value problems to 
initial value problems was first introduced by Toepfer! in 1912 in his at­
tempt to solve Blasius' equation in boundary layer theory by a series ex­
pansion method. About half a century later Klamkin 2 , based on the same 
reasoning, extended the method to a wider class of problems. Major ex­
tensions were made possible only when the transformation process was in­
terpreted and re-exaIllined by Na3 in terms of the continuous groups of 
transformations. 

In this chapter, two methods for transforming a boundary value prob­
lem into an initial value problem are discussed. The first method uses 
inspectional groups, and as such will be referred to as the "inspectional 
group method". The second method,which is deductive in nature, is based 
on the use of infinitesimal groups and will therefore be called the "infinites­
imal group method". Both the methods start out by defining a group 
of transformations. The "particular transformation" within this group of 
transformations which can convert the boundary value problem into an 
initial value problem is identified. In the inspectional group method, the 
particular transformation within this group of transformations which can 
convert the boundary value problem into initial value problem is similarly 
identified. This is done by stipulating that: 
(1) the given differential equation be independent of the parameter of 

transformation, and 
(2) the parameter of transformation is identified as the "missing" bound-

ary condition. 
In the infinitesimal group method, invocation of invariance of the differen­
tial equation leads to a particular form of the characteristic function, W. 
This will result in a subsystem of equations which upon integrating from 
the variables in the boundary value problem to the variables in the initial 
value problem, gives the required transformation. 

We will now exanline the illspectional group method and the infinites­
imal group method through applications to some engineering boundary 
value problems. 

9.1 Blasius Equation in Boundary Layer Flow 

As a first example, let us consider the Blasius equation from the bound-
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ary layer theory4. The objective is to transform the boundary value problem 

I'} = 0 : 1(0) = 0 , tf(o) = 0 
d'1 

tf(oo) = 1 
dl'} 

into an initial value problem 

.£3g 1 lf2g 
de + 2g de2 = 0 

e = 0 : g(O) = 0; d~) = 0 j 1f2 :e~O) = 1 

We will now derive the transformation using both methods. 

(a) Inspectional Group Method: 

Defining a linear group of transformations, G: 

1ransforming Eq.(9.1) by using group,G, we have 

Eqs.(9.1) and (9.3) would be equivalent if 

or 

(9.1) 

(9.2a, b) 

(9.2c) 

(9.3) 

(9.4a, b, c) 

(9.5) 

(9.6) 

(9.7a) 

(9.7b) 

The first two boundary conditions,Eqs.(9.2a,b), would transform under 
Eq.(9.5) to the conditions (9.4a,b). However, the boundary condition, 
Eq.{9.2c) becomes 

tf(oo) = AU 2 dg(oo) = 1 
dl'} AUl de 

(9.8a) 

Using the relationship as obtained in Eq.(9.7b), 

(9.8b) 
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We now have to determine A such that the "stipulated" boundary 
condition, Eq.{9.4c) is obtained. Therefore, 

cPg(O) = A2u
l cPf{O) = 1 (9.9a) 

de Au, drJ2 

so that 

(9.9b) 

We now set I' (O) equal to the value of the parameter,A, so that 
Eq.{9.9b) leads to a2 = 1/3. Therefore, using Eq.(9.7b) al = -1/3. 

Eliminating the parameter A such that Eq.(9.8b) and (9.9b) are equiv­
alent, we have 

(9.10) 

The numerical integration is now straightforward: 
(i) Solve Eq.(9.3) subject to boundary conditions, Eq.(9.4) , as an initial 

value problem by forward integration. Obtain the value of g'{oo). 
(ii) Compute the value of A from the relationship 

A = (dg(00))-S/2 
d~ 

(iii) Using the transformation as defined by Eq.(9.5), determine the vari­
ation of f(rJ) vs. rJ. Therefore, the problem is now transformed back 
into its original description. 

For the Blasius problem, the variation of dg/ de vs. e is plotted in 
Fig.9.1. It can be seen from the figure that dg( 00)/ de=2.0852. Therefore, 
the value of A from Eq.(9.10) is equal to 0.3320. The transformation can 
now be written as 

G : rJ = A-lise; /= Al/Sg where A = 0.3320. (9.5b) 

dO(<D) dt =2.0852 

------- --- ---=-:...:-:::....=-~--

2 3 4 5 

Fig.9.1 Solution of Eq.(9.3) 
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(b) Infinitesimal Group Method 

The basic difference between this method and the inspectional method 
is that no particular group of transformation is defined at the outset. The 
required boundary to initial value transformation is derived systematically. 
To begin, let us define an infinitesimal group of transformations: 

fj = '" + e¢(",,!) + O(e2 ) 

1 = f + ee(",,!) + O(e2 ) 

p = p + ed"''!, p) + O(e2 ) 

q = q + eo(""f, p) + O(e2 ) 

r = r + ep(""f, p) + O(e2 ) 

where 

with 

In terms of the characteristic function, W, 

aw aw 
¢ = a p ; e = p a p - w ; ~ = - X( W) 

0= -[.;r2 W + 2qXaa~ + /a;] 

[ 3 ~a W a W 2a2 w] 
p=-XW+3q op+3qXoj+3Qojap 

_r[3Xaw + aw] 
op af 

X()= ~+p~ 
0", oj 

Eq.(9.1) can be written as: 

1 
r+-fq=O 

2 

(9.11) 

(9.12) 

(9.13) 

Invariance of Eq.(9.1) under transformation (9.11) can be written as 

1 1 
p + - fo + - qe = 0 

2 2 
(9.14) 

Using Eqs.(9.12), we get: 

3 20 WoW 2a2 W 3 a W 
x W + 3qX ap + 3qX af + 3q afap - '2fqX ap 
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_~!/W +~!(X2W+2qX8W +/W) 
2 8! 2 8p 8! 

+!(W_ p8W)=O 
2 8p 

(9.15) 

Simplifying and re-writing Eq.(9.15), we have 

3 1 8 W & W 282 W 
X W + (3qX - 2!q)X 8p + 3qX 81 + 3q 818p 

1 1 1 8W 
+-/X2 W + -qW - -pq- = 0 

2 2 2 8p 
(9.16) 

Since W is linear in p, 

(9.17) 

Substituting Eq.(9.17) into Eq.(9.16), we get 

83 W2 182 W2 82 WI 83 W2 182 WI 82 W2 
8",3 + 2 8",2 + p( 8",3 + 3 8",281 + 2 8",2 + 1 8",81) 

2( 83 WI 8 3 W2 82 Wl 182 W2) 
+p 3 818",2 + 3 8",8P + 1 8",81 + 2 8P 

3 ( 83 WI 83 W2 182 Wl) 4 83 Wl 
+p 3 8",8P + 8f + 2 8P + p 8f 

82 Wl 18 Wl 82 W2 W2 
+q[3 8",2 - 28r1 + 3 8",81 + 2] 

f 8 Wl 82 Wl 82 Wz 
+pq[ - 2ar+ 9 8",8f +3 8p ] 

2 82 Wl 28 Wl 
+6p q 8 P + 3q ar = 0 (9.18) 

Equating the coefficients equal to zero, we can conclude based on the coef­
ficient of q2 that 

The coefficient of pq would lead to the conclusion that W2 is linear in I. 
The remaining coefficients can be written as: 

83 W2 1/82 W2 
8",3 + 2 8rj2 = 0 

8 3 Wl 83 W2 1 82 Wl 82 W2 
8",3 + 3 818",2 + 21 8",2 + 1 8",81 = 0 (9.19) 
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02 WI ! 0 Wl 02 W2 W2 3-- - --+3-- + - =0 
0'12 2 0'1 0'10! 2 

The solution of Eqs.(9.19) would lead to: 

W('1J,p) = (cs'1 + ca)P + cs! - 6cs (9.20) 

The infinitesimals ~ and 6 are: 

~ = -2csp ; 6 = -3csq (9.21) 

The difference between the boundary value problem, Eqs.(9.1) and (9.2), 
and the initial value problem, Eqs.(9.3) and (9.4) lies in the boundary 
conditions Eqs.(9.2c) and (9.4e). 

We therefore integrate the equations 

dp dq 
--=--=da 
-2csP - 3csq 

(9.22) 

from the variables in the boundary value problem, namely, 

Jf tPf p( = -) and q( = -
d'1 d'12 

to the variables in the initial value problem,' namely, 

P* (= dg) * ( tP 9 ) ae and q = de2 

The results are 

(9.23a, b) * L = e - 3C5 a and 
q 

Evaluating Eq.(9.23a) at '1 = e = 0: 

tP f(O) -3c a --=e 5 
d'12 

(9.24) 

Evaluating Eq.(9.23b) at '1 = e = 00: 

dg(oo) -2c a --=e 5 de (9.25) 

Eliminating csa from Eqs.(9.24) and (9.25), we obtain the relationship 

tPf(O) _ (dg(OO))-3/2 
7.;2- ~ 

which is the same as Eq.(9.1O). 
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9.2 Longitudinal Impact of Nonlinear Viscoplastic Rods 

We now consider the problem of longitudinal impact of a semi-infinite 
nonlinear viscoplastic rod that is subjected to a constant velocity impact,tlo, 
as shown in Fig.9.2. 

x=o 

Fig. 9.2 One-Dimensional Viscoplastic Impact 

The governing equation is quasilinear parabolic and can be written 
ass: 

(9.26) 

II is the particle velocity, and q is the nonlinear exponent of the constitutive 
relationship 

8e = D(:!.- _ l)l/q 
at 0"0 

x is the space coordinate, t is the time, 0" is the stress and e is the strain. 
The constants I, D and q depend on the material of the rod. 

Using the similarity transformation 

where 

kx 
'1 =­

tm 

Eq.(9.27) can be written as 
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The boundary conditions v(O, t) = Vo and v(oo, t) = 0 transform to 

/(0) = 1 ; /(00) = 0 (9.29) 

Making the change of variable / = 1- F, Eqs.(9.28) and (9.29) becomes: 

F(O) = 0 and F(oo) = 1 

(a) Inspectional Group Method 

We now define a linear group of transformation, G, 

so that the boundary value problem can be transformed to 

tPg _~(dg)2_q 
de2 +".." de 

dg(O) 
g(O) = 0 and -- = 1 de 

Transforming Eq.(9.30) under the group G: 

IT we set 
02 - 201 = (q - 1)01 + (2 - q)02 

then Eq.(9.32) is obtained. Therefore, 

01 q - 1 
-=--
02 q+ 1 

(9.30) 

(9.31) 

(9.32) 

(9.33) 

(9.34) 

The boundary condition F(O) = 0 is transformed to g(O) = o. However, 
the boundary condition F( 00) is transformed as follows: 

Therefore, 
A = [_1_p/Q~ 

g(oo) 
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We now determine A such that "missing" boundary condition 

dF(O) = A or AO ,-Ol dg(O) = A 
drt de 

Since dg(O)j de = 1, we have: 

(9.36) 

From Eqs.(9.34) and (9.36), 

1 1 
01 = 2(q-l) and °2 = 2(q+ 1) (9.37) 

The numerical procedure would proceed as follows: 
(i) Solve Eqs.(9.32) and (9.33) as an initial value problem using forward 

integration. Obtain the value of g(oo). 
(ii) Evaluate A using Eqs.(9.35) and (9.37). 

(iii) Using the group of transformations, G, the variation of F vs. rJ can 
now be determined. 
For different values of the nonlinear exponent,q, the gradient F' (0) = A 

is compared with closed-form results5 and the agreement is found to be 
good. 

(b) Infinitesimal Group Method 

Eq.(9.30) can be written as 

where 
dF ~F 

P = drt ; k = drt2 

Introducing the infinitesimal group of transformations: 

fj = rJ + €q,('11F) + O(€2) 

F = F + €(I(rJ, F) + O(€2) 

p= P+€~(rJ,F,P) + O(e2 ) 

k= k+eo('1, F,P, k) + O(€2) 

In terms of the characteristic function, W, 

8W 
(/=P-- W 

8p 
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~ = -X(W) 

8 = -[X'! + 2kXa W + k aWl 
ap aF 

(9.40) 

with 

X( )=~+p~ 
ap aF 

_a2() a2() 2a2() 
X'!( ) - a,,2 + 2p a"aF + p aF2 

Again, the objective here is to transform the given boundary value prob­
lem to an initial value problem suitable for numerical forward integration 
procedures. 

Invariance of Eq.(9.38) under the group defined by Eqs.(9.39) requires 
that 

8 + mp2-9,p + m(2 - q)"pl-9~ = 0 

Substituting Eqs.(9.40) into Eq.(9.41), we get 

a2w a2w 2a2w 2- 9 ( aw aw) 
- a,,2 - 2p a"aF - p aF2 + mrJP 2X ap + aF 

, +mp2-QaW -m(2-q)"pl-QX=O 
ap 

Since W(",F,p) is linear in p, we let 

(9.41) 

(9.42) 

(9.43) 

Substituting Eq.(9.43) into Eq.(9.42), and equating the coefficients to zero: 

a2 Wl a2 W2 

a,,2 + 2 a"aF = 0 

a2 Wl a2 W2 

2 a"a F + a F2 = 0 

a2 Wl = 0 
aF2 (9.44) 

a Wl a W2 
mp,., a." - m(l- q),., aF + mWl = 0 

aWl = 0 
aF 
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8W2 =0 
8'1 

The characteristic function can be obtained by solving Eqs. (9.44) in 
the following form: 

The infinitesimals <P,O and ~ can now be written as: 

We now solve the system of equations 

Or, dF dp 
-=-=-=da 
<P 0 ~ 

2C3 
~=---p 

l+q 

(9.45) 

(9.46) 

(9.47) 

Integrating Eqs. (9.4 7). so that the variables of the boundary value prob­
lem, Eqs.(9.30) and (9.31) can be related to those of the initial value prob­
lem, Eqs.(9.32) and (9.33), we obtain the following relationships. 

~ = tP-q)/(l+q)C3 a 

'1 

* E- = e-2c3a/(l+q) 

p 

Evaiuat,ing Eq.(9.48b) at '1 approaches infinity, we get: 

Since F(oo) = 1, we have 
g(oo) = e -C3 a 

Evaluating Eq.(9.48c) at '1 equals to zero, we get 

Since we have stipulated that 

dg(O) 
--=1 de 
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in the initial value problem, we get 

dF(O) = exp( 2c3 a) 
d", 1+q 

(9.51) 

Eliminating 'a' from Eqs.(9.49) and (9.51),we get 

dF(O) = [_1_]2/ 19+1) 

d", g(oo) 
(9.52) 

Eq.(9.52), which is obtained by the infinitesimal group method, is the same 
as Eq.(9.35) obtained by the inspectional group method. 

9.3 Summary 

Group-theoretic techniques for transforming a boundary value problem 
to an initial value problem were covered in this chapter. Two methods for 
obtaining such transformations were discussed: (1) the inspectional group 
method, and (2) the infinitesimal group method. The basic difference be­
tween the inspectional and the infinitesimal group methods is that in the 
latter, the transformation is deduced systematically by starting out with a 
general group of transformations. The required transformation that con­
vert a boundary value problem to an equivalent initial value description 
were obtained by stipulating that: (a) the governing differential equations 
be invariant under the group of transformations, and (b) the parameter of 
transformation is identified as the "missing" boundary condition. For fur­
ther details on the application of the group-theoretic techniques to bound­
ary value problems, readers should refer to the text by NaG. 
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Chapter 10 

FROM NONLINEAR TO LINEAR DD'FERENTIAL EQUATIONS 

USING TRANSFORMATION GROUPS 

10.0 Introduction 

The mathematical descriptions of large number of physical problems 
arising in science and engineering manifest themselves as nonlinear differ­
ential equations. Since there is an abundance of methods for dealing with 
linear differential equations, a popular practice has been to introduce some 
form of approximation that would linearize the nonlinear equation. These 
approximations usually impose certain restrictions on the solutions. In this 
chapter, we will discuss procedures for deriving mappings based on group­
theoretic motivations that transform a nonlinear differential equation into 
a linear differential equation. 

Na and Hansen l and Bluman2 have proposed deductive procedures 
for deriving mappings that transform a nonlinear differential equation to 
a linear form. Their procedures are based on the use of Lie's group of 
"point transformations" which act on a finite dimensional space. Na and 
Seshadri3 have proposed an approach that is based on simple groups of 
transformations. The underlying group-theoretic concept of invariance is 
used in all of the above procedures. 

It has been recently shown that differential equations can be invari­
ant under a continuous group of transformations beyond point or contact 
transforma.tions 4. These continuous group of transformations commonly 
known as "Noether transformations" or "Lie-Backlund (LB) transforma­
tion" act on an infinite dimensional space. The underlying basis of these 
procedures can be summarized as follows: Any linear differential equation 
which admits a nontrivial one-paranleter point Lie group of transformations 
is invariant under an infinite number of one-parameter LB transformations 
through superposition. Moreover,every known nonlinear partial differential 
equation invariant under LB transformations can be associated with some 
corresponding linear partial differential equations. Readers are referred to 
the works of Anderson et al5 and Kumei and Bluman 6 for details on the use 
of LB transformations for discovering mappings that transform nonlinear 
to linear differential equations. 

In this chapter, procedures based on Lie's group of point transforma­
tions will be discussed in some detail. Effort has been made to keep the 
treatment of the subject as simple as possible, so that the novice can grasp 
the underlying principles involved. 
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10.1 From Nonlinear to Linear Differential Equations 

The underlying principle in any group technique that transforms one 
differential equation to another can be stated as follows: "If a transfor­
mation maps any solution of a differential equation HM into solution of a 
differential equation HN, then it is necessary that this mapping transforms 
the Lie group of HM into the Lie group of HN". Therefore, let us then say 
that the differential equations HM and HN are invariant under groups GM 
and GN, respectively. If a transformation can be found that maps GM into 
GN , then the differential equation HM is mapped into HN • 

Let us now consider a second order partial differential equation to 
represent HM and HN: 

Introducing the notation 

~l = X; ~2 = t j ~3 = U j ~4 = U% j ~5 = Ut 

Eq.(1O.1} can he written as: 

We now define an infinitesimal Lie group (GM) as: 

(J. = ~l + €sl~l (~1'~2'~3) + 0(€2) 

f2 = ~2 +€S;;1(~1'~2'~3) + 0((2) 

(s = ~3 + €S~l (~1'~2'~3) + 0(€2) 

~k = ~k + €sl~) (~1'~2'~3) + 0((2} 

(10.1) 

(10.2) 

(1O.3) 

(10Aa) 

(10046) 

(lOAc) 

(lOAd) 

where k=4,5,6,7 and 8, and € is the parameter of the infinitesimal group. 
We can write Eq.(lO.4} in an abbreviated form as 

(10.S) 

Similarly, the group GN can be written as: 

(10.6) 

where S M and SNare the infinitesimals and their extensions. 
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H there exists a mapping (T) such that ... 

T: v = F(~1J~2J~3J~4J~5) (10.7) 

maps the solution of HM into those of HN , then F must necessarily sat­
isfy the following relationship arising from invariance of Eq.(10.7) under 
Eq.(10.4) to (10.6): 

5 

S (3) _ LS(i) aF 
N- M­al'· i=1 ~, 

H we seek a transformation of dependent variables only, then 

(10.8) 

(10.9) 

Eqs.{10.8} and (10.9) express the underlying concept of invariance, and 
relate equations HM and HN. 

Two methods for deducing the required mapping that would transform 
a nonlinear differential equation into a linear differential equation is now 
discussed. 

(i) The Inspectional Group Method 

In an effort to enable a non-specialist in group theory to use these 
powerful concepts in a quick and simple manner, a procedure entitled "in­
spectional group method" was proposed 3. For the purpose of discussion, 
we consider a one-parameter linear group. However, other groups such as 
spiral groups etc. can be used. 

The key steps are as follows: 
{1} Define the assumed group of transformations as 

(lO.lOa) 

(10.10b) 

(2) Invoke invariance of the differential equations (10.1) and (10.2) under 
groups (10.10) , respectively, and determine the relationship between 
p, m and n, a.nd the relationship between q, m and n. 

(3) Consistent with the "assumed" group,a mapping of the following form 
is sought: 

(1O.11) 

The constants Q 1 to Q5 are determined so that 

(10.12) 

* The necessary and sufficient condition for the existence of a one to 
one transformation of a system of nonlinear differential equations to a 
system of linear equations is discussed by Kumei and BIuman 6. 
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In practice, some trial and error is involved at this stage. We can 
assume a trial form of Eq.(lO.ll} by setting some of the (x's equal to 
zero. The only exception is when 

For this case, the mapping is invalid. 
(4) Substitute the trial mapping (T) into equation HM and check if equa­

tion HN is obtained. If it does, the value of C can be readily obtained. 
If it fails to yield equation HN , then proceed to find another mapping 
using different a's. 

While the inspectional group method has been described by using 
a one-parameter linear group of transformations, any other inspectional. 
groups such as spiral groups can be used. The reader should try out all 
possible groups on order to come up with the required nonlinear to lin­
ear mapping. Limitations of the inspectional group method is discussed in 
section lOA. 

(ii) The Infinitesimal Group Method 

The infinitesimal group method is mathematically more rigorous and 
complete. The key steps for this method are as follows: 

(1) For the given nonlinear equation HM , and the desired linear form HN, 
the respective infinitesimals or transformation functions 

(S(l) S(2) S(3)) d (S(l) S(2) S(3)) 
M' M 'M an N 1 N , N 

are obtained by determining the "characteristic function", W, as de­
scribed in section 3.2. 

(2) Since only transformation of dependent variables is sought, it is stipu­
lated that 

(3) The required nonlinear to linear transformation (T), 

T: v = F(~1'~2,~3'~4'~5) 

is obtained by solving the subsystem 

5 
s(3) = "\"'S(,)aF 

N L., Mal"' 
1=1 ~l 

or 
dF ~1 ~2 ~5 

S (3) = S(l) = S(2) = ...... = (5T 
N M M SM 
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10.2 Application to Ordinary Differential Equations -Bernoulli's Equation 

Consider, as an example, the first order nonlinear ordinary differential 
equation 7: 

du k 
HM : dx + B(x)u = R(x)u (10.13) 

The objective here is to systematically discover a mapping (T) using the 
inspectional as well as infinitesimal group methods that will transform 
Eq.(10.13) into the linear form: 

dv 
HN : dx + C(x)v = D(x) (10.14) 

(a) lnspectional Group Method: 
We now define a group of transformations GM and GN as follows: 

(10.15a) 

(10.15b) 

For Eqs.(10.13) and (10.14) to be invariant under GM and GN respectively, 
their coefficients have to be expressible in the following form: 

(10.16a) 

C(x) = coxm, (10.16b) 

These types of restrictions are typical of the inspectional methods where 
assumed transformation groups are used. 

Invariance of Eq.(1O.13) under group GM gives the following relation­
ship: 

pd1- k) = r(nl - md (10.17) 

Similarly, invariance of Eq.(1O.14) under group GN leads to: 

P2 = r(n2 - ~) (10.18) 

We now seek a trial mapping (T) 

(10.19) 

where 01 and 02 are as yet to be determined. lnvariance of Eq.(10.19) under 
GM and GN along with the use of Eqs.(1O.17) and (10.18) gives 

(10.20) 
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The Leibnitz transformation is obtained when ml = fn2, nl = n2 and 02 = 
O. Therefore, 

1 
01=--1-k (10.21) 

where >. can be found to equal to one, by substituting Eq.(1O.21) into 
Eq.(1O.13) and then comparing with Eq.(10.14). 

It is seen that that by assuming other forms of "trial mappings", T,the 
linear differential equation will not result. The trial and error process in­
volved is certainly a disadvantage of the inspectional group method. How­
ever, whenever applicable, the method is very simple to apply. The limita­
tions of this method are discussed in section 10.4. 

(b) Infinitesimal Group Method: 

We will now rewrite the Bernoulli's equation as: 

HM: p + B(x)u = R(x)uk (10.13a) 

where p = du/ dx. 
Similarly, the linear version can be written as 

HN: q + O(x)v = D(x) (1O.14a) 

where q = dv/ dx. 
An infinitesimal group of transformations is defined as follows: 

and 

Gm : x = x + €e(x, u' p) + 0(€2) 

ii = u + €O(x, u, p) + 0(€2) 

P = p + €1T(X, u,p) + 0(€2) 

GN : x= x+ €dX,v,q) + 0(€2) 

v= v+€S(x,v,q) + O(€2) 

q= q+€Q(xJv,q) + O(€2) 

In terms of the characteristic functiion, WI, 

€= aWl 
ap 

aWl 
O=p--- WI op 

aWl aWl 1T=----p--ax au 
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Similarly, in terms of the characteristic function, W2 , 

oW2 
~=­oq 

oW2 S = q-- - W2 oq 
Q = _ 0 W2 _ q 0 W2 

ox Of} 

{10.24} 

If the variable x remains unchanged after the transformations, then 

e=O OWl 
{1O.25a} or -- =0 op 

~=O 
OW2 

(10.25b) or -- =0 oq 
This stipulation is more restrictive than the requirement that e and ~ should 
be equal, but non-zero, for a nonlinear to linear transformation to exist. 
Rewriting Eq.{1O.13a} as 

(10.13b) 

we find that Eq.{10.13b) is invariant under GM if 

O[OFI +1l"(OFI)] =0 
OU op (10.26) 

Substituting Eq.{10.23) into Eq.(10.26), 

(B kR k-l)( aWl W) (aWl awl )_ - u p-- - I - --+p-- -0 op ax au (10.27) 

Eq.(10.27) is a first order linear partial differential equation in WI. Since 
a wI/ap = 0, Eq.(1O.27) can be written as: 

(B kR k-l) W 0 WI a WI - 0 
- U I + -- + p-- -ox ou (10.28) 

Eq.(10.28) is linear in WI, therefore we can separate the variables x 
and u as: 

WI (XI u) = cPJ(x}tj;( u) 

Substituting WI from Eq.{10.29} into Eq.(1O.28) , we get 

(B ·kR k-l) 1 acPI 1 Otj;l - u +--+p--
cPI oX tj;I au 
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Introducing p from Eq.(10.13b) into Eq.(lO.30) and rearranging, the fol­
lowing equation can be obtained: 

from which 

[ 1 a4>l] [k 1 ath] (l-k)B+-- -p -+-- =0 
4>1 ax U,pl au 

04>1 = -(1 - x)B4> ox 
O,pl k,p 
OU =-;-

Solving Eq.(10.32) and Eq.(10.33)' we get 

4>1 = exp( - /(1 -k)Bdu) 

Therefore, the characteristic function is 

W1(x,u) = ukexp( - /(1- k)Bdu) 

Using Eq.(1O.23) and (10.34), we have 

0= p a WI - WI = -ukexp( - /(1- k)Bdu) op 

(10.31) 

(10.32) 

(10.33) 

(10.34) 

(10.35) 

In a similar fashion, we will proceed to analyze Eq.(1O.14a). Here 
again, it is stipulated that the independent variable does not transform 
under G N. Therefore, 

Rewriting Eq.(1O.14a) as 

oWz 
~=-=O oq 

Fz=q + C(x) - D(x) = 0 (10.14b) 

the condition for invariance of the above equation under G N can be written 
as 

SOF2 + QoF2 = 0 
ov oq (10.36) 

Substituting Eq.(1O.24) into Eq.(10.36), we get 

(10.37) 

Since Eq.(1O.37) is linear in W2 , we can assume that 

W2(x, v) = 4>2(X),p2(V) (10.38) 
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Substituting Eq.(10.38) into Eq.(10.37), we get: 

Therefore, 

and 

~ a4>2 = 0 
4>2 ax 

C+ ~ atP2 = 0 
tP2 av 

The characteristic function, W 2, can be written as 

(10.39) 

(10.40) 

(10.41) 

(10.42) 

Using the relationship defined in Eq.(10.24) the infinitesimal for v can be 
written as 

s = /a:2 - W2 = -o:o1'oexp( -I C(x)dx) (10.43) 

To obtain the nonlinear to linear transformation 

T: u = u( v) (10.44) 

we solve the infinitesimal version of Eq.(10.44), which can be written as: 

e = Sdu 
dv 

(10.45) 

Therefore, using values of e and S from Eq.(1O.35) and Eq.(10.43),we get 

ukexp( -I (1- k)Bdx) = o:o1'oexp[ -I C(x)dx] ~: 

(10.46) 

Letting C(x) = (1- k)B(x), we have 

du dy 
uk = 0:01'0 

(10.47) 

Integrating Eq.(10.47), we get 

T '. 0:01'0 l-k v=--u 1-k 
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When Qof3o = 1 - k,the transformation (T) would map the nonlinear equa­
tion in the linear form. 

Therefore, the required nonlinear to linear transformation (T) is 

(10.48) 

It can be seen that in both the inspectional and infinitesimal group 
methods, the underlying concept of invariance leads to the required map­
ping. While B(x), C(x},D(x) and R(x) have to be expressed in a power 
form in the inspectional group method because of the assumed group of 
transformations, no such restrictions are required in the infinitesimal group 
method. 

10.3 Application to Partial Differential Equations-A Nonlinear Chemical[ 
Exchange Process 

Consider now the nonlinear partial differential equation 7 

HM: fLzt + fLt + fL., + fL.,fLt = 0 (10.49) 

The above equation arises in a chemical exchange process between a solid 
bed and a fluid flowing through it, sediment transport in rivers, and in chro­
matography .. We will now make a systematic attempt to obtain a mapping 
that will linearize Eq.(10.49) into the following form: 

HN: tlzt + tit + tI., = 0 (10.50) 

(a) Inspectional Group Method: 

Eq.(10.49) is invariant under a group of transformations, GM, defined 
as 

G M: ii = fL + Cl a ; X = x ; t = t (10.51) 

where a is the parameter of transformation. 
By inspection, it can be seen that Eq.(1O.50) is invariant under GN , 

(10.52) 

Examination of groups GM and GN would reveal that a trial nonlinear to 
linear transformation can be expressed as 

T: tI = at eflu (10.53) 

where at and f3 are to be determined such that Eq.(10.53) is invariant under 
GM and GN. Therefore, substituting Eq.(10.51) and (10.52) into Eq.(1O.53) 
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or, 

For invariance of Eq.(10.53), 

or, 

The "trial" transformation can now be expressed as: 

1 ( tI 
U = -In -) 

f3 0: 

(10.54) 

(10.55) 

Substituting the transformation (10.55) into Eq.(10.49), we obtain the fol­
lowing: 

au 10:atl 
ax = 13-;; ax 
au 1 0: atl 
at = 13-;; at 

a au 0: a 1 a tI 0: 1 a tI a tI 1 a2 tI 

a/ a) = 13 [a/; ax)] = ;e [ - tl2 ax at + ; axat] 

Therefore, Eq.(10.49) can be rewritten as: 

0: 1 a2 t1 1 atl atl] 0: 1 atl - ------- +---,B [ti axat tl2 ax at f3 tI at 

0: 1 atl 0:2 atl atl +--- + ---- = 0 f3 tI a x f32 tl2 a x at 
If 0: = /3 = 1, then Eq.(1O.57) becomes: 

which is the required linear form. 

(10.56) 

(10.57) 

Therefore, the transformation (T) which maps given nonlinear equa­
tion into a linear form is 

u = In( tI) (10.58) 

This is an example where the invariance is invoked under a spiral group of 
transformation. 

(b) Infinitesimal Group Method: 
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The infinitesimal group method will now be used to discover a trans­
formation (T) that will transform 

into a linear form 
HN: Vzt + Vt + Vz = 0 

Defining an infinitesimal group, G N: 

GN: t = t+ €T(t,x) + 0(€2) 

x = X + €X( t, x) + 0(€2) 

V = V + € V ( t, x, ttl + O( €2) 

where the infinitesimals are defined in section 2.9 as: 

T=aw 
ap 

aw aw aw 
X = - ; V = p- + q- - W aq ap aq 

aV 
p=­

at 
aV 

q=­ax 
The group is now extended as follows: 

where 

and 

p = p + €1I"1(t, x, V,p, q) + 0(€2) 

q= q+€1rdt,x,v,p,q) + 0(€2) 

r= r+€4>dt,x,v,p,q,s,J) + 0(€2) 

8= S+f4>2(t,x,v,p,q,r,s,J) + 0(€2) 
- 2 !=!+€4>3(t,x,v,p,q,s,J) + O(€) 

aw aw aw aw 
11"1 = -- - p- 11"2 = -- - q-at av ax av 

a2 w a2 w a2 w a2 w 
4>2 = - awt - p awv - q avat - r awp 

a w a2 w a2 w a2 w a3 w 
-s( a;- + axaq + atap) -!( ataq) + p2 axavap 

a3 w a3 w a2 w a3 w 
+pq( awvaq + avatap - av2 ) + q2 avataq 
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2 a3 W 2 a3 W a2 W a2 W 
+p q apaV2 + pq aqav2 + pS aVap + qs avaq 

Eq.(10.50) can be rewritten as 

The general invarlance relationship is given by 

T aHN XaHN VaHN aHN aHN --+ -+ --+11"1--+11"2--at ax av ap aq 

aHN aHN aHN 
+~lTr+~2Ts+~3at = 0 

Substituting Eq.(10.50) into Eq.(10.60), we get: 

(10.50a) 

(10.60) 

(10.61) 

In terms of the characteristic function, W, Eq.(10.61), after replacing s by 
- (p + q) can be expressed as: 

a W a W a W a W a2 W 
Tt·+ p av + ax + qa; + axat 

a2 W a2 W a2 W a W a2 W 
+p axav + q avat + r axap - (p + q)( Tv + axaq 

a2 W a2 W a2 W a2 W 
+--p---q-+j-

apat avap avaq ata.q 

a3 W a3 W a3 W a2 W _ p2 _ pq( + __ ) 
axavap axavaq avatap av2 

a3 W a3 W a3 W 
_q2 avataq - p2q av2ap - pq av2aq = 0 

Since W is linear in both p and q, 

W(t,x,v,p,q) = Wdt,x,u)p+ W2(t,x,v)q+ W3(t,x,v}. 

Substituting Eqs.(10.63} into (10.62), we get 

(10.62) 

(10.63) 

(a W3 a W3 a2 W3) (a WI a2 WI a2 W3 a W2 ) 
at + a;- + axat + a;- + axat + axav - ax p 
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aws aws a2 Ws 
at + ax + axat = 0 

a Wl a2 Wl a2 Ws a W2 
at + axat + avat - a;: = 0 

a W2 a2 W2 a2 Ws a Wl 0 
at+ axat + avat - at = 

aWl = 0 
av 

aW2 = 0 
av 

a Wl + a W2 + a2 Ws = 0 
av av av2 

aWl 
--=0 ax 
aW2 = 0 
at 

(10.64a) 

(10.64b) 

(10.64c) 

(10.64d) 

(10.64e) 

(10.64/) 

(10.649) 

(1O.64h) 

Eqs.(10.64d) and (10.64g) show that Wl is a function of t. Eqs.(10.64e) 
and (10.64h) show that W2 = W2 (x). Therefore, Eq.(10.64f) becomes 

so that 

a2ws 
--=0 av2 (10.65) 

(10.65) 

The simplified forms of Eqs.(1O.64a) to (10.64c) can be written as: 

a Ws a Ws a2 Ws 
at+a;:+ axat =0 

a2 Ws a W2 
----=0 axav ax 
a2 Ws _ a W1 = 0 
avat at 

(1O.66a) 

(10.66b) 

(1O.66c) 

Using Eq.(10.65) in the above equations, the following can be obtained: 

a WSl a WS1 a2 WS1 _ 0 
at + ax + axat - (10.67a) 

a WS2 a WS2 a2 WS2 
-at + ax- + axat = 0 (10.67b) 
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a WSI _ a W2 = 0 
at ax (10.67c) 

_ a WSI _ a WI = 0 
at ax (10.67 d) 

From Eq.(10.67c), we get 

(10.68) 

From Eq.(10.67d), we get 

(10.69) 

Comparing Eqs.(10.68) and (10.69), we conclude that 

(10.70) 

Substituting W3I from Eq.(10.70) into Eq.(10.67a}, we get 

a WI a W2 --+--=0 at ax 
Therefore, we get 

Eq.(10.70) gives: 
(10.71) 

The characteristic function, W, can therefore be written as: 

+[C7 + C4(X- t)]v+ W32 (t,X) (10.72) 

where W32 (t,X) is a function that satisfies Eq.{10.67b). By definition, 
Eq.(1O.59a}, we write 

(10.73) 

F9r the nonlinear equation,HM , 

HM : tLxt + tLt + tLx + tLxtLt = 0 (10.49) 
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the same procedure as for HN is followed: 

where 

with 

GM : t= t+€T(tIX,U) + O(€2) 

x= x+€tP(t,X,U) + O(€2) 

it= u+€U(t,X,U) + (€2) 

aw'" aw* 
r---' tP---- ap* I - aq* 

U ",aw'" *aw'" W* 
=p --+q ---ap* aq* 

* au p=-
at 

* au 
q = ax 

The group is extended as: 

-'" '" *( * *) O( 2) P = P + €1I"1 t, X, u, P I q + € 

q* = q* +€1I"2*(tlx , u, p*,q*) + O(€2) 

-* * '" * ( * * * * /*) O( 2) r = r + E'f'l t, X, u, P I q I r I S I + € 

-* * '" *( * * * * /*) O( 2) S = S + €'f'2 t, X, u, P I q I r I S I + € 

with 
* a2u * a2 u a2 u 

r = aiZ j S = 8t1)x j f* = ax2 

(10.74) 

(10.75) 

where 11": and1l"; can be expressed in terms of the characteristic function, W*, 
in the same form as Eqs.(10.59b). Eq.(1O.49) can be rewritten as 

H * '" '" "'* M: s +p +q +p q =0 (10.76) 

The invariance relationship can be written as 

",aHA{ ",aHA{ ",aHM 
+4>1 ar'" + 4>2 as'" + 4>3 af* = 0 (10.77) 

Substituting Eq.(10.76) into Eq.(10.77), we get 

(10.78) 
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In the same fashion as the linear equation, the following equations can be 
obtained: 

where 

aw* aw* a2w* __ 3 + __ 3 + __ 3 = 0 (1O.79a) 
at ax axat 

a wi a2 wi a2 W3 a w; a W3* () a;: + axat + axau - a;: + a;: = 0 10.7gb 

a W:~* a2 W2* a2 W3* a wt a w; at + axat + auat - at + at = 0 (1O.79c) 

aw* aw* __ 1 + __ 1 = 0 (10. 79d) 
au at 

a w* a w.* 
__ 2 + __ 2 = 0 (10.7ge) au . at 

a wt a W2* a2 W3* 2a W2* 2a W1* 3a W3* 
~ + a;- + a;r + a;- + -----at + a;- = 0 

a W1* = 0 
ax 

a W2* = 0 
at 

aw* __ 1 =0 
au 

a w:* __ 2 =0 
au 

W* ( * *) w* * w:* * w:* t, x, u, P I q = 1 P + 2 q + 3' 

(10.79/) 

(10.79g) 

(1O.79h) 

(1O.79i) 

(10.79j) 

It can be seen that Wl = Wr(t) and W2 = W2 (x). We seek a nonlinear to 
linear transformation such that 

x =.,p and T = 'r 

Therefore, 
wt = (cG - C4t) 

Using Eqs.(10.80), Eqs.(1O.79) become: 

a w:* a w:* a2 w:* __ 3 + __ 3 + __ 3 =0 
at ax axat 
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a2 W3* a W; 
auat + at = -C4 (10.81c) 

a2 w.* a w.* __ 3_ + 3 __ 3 = 0 
a,p au (1O.81d) 

Eqs.(10.81b} and (10.81d) give, respectively, 

a W; b ( )-" --a;- = C4 + 1 t, x e (10.82) 

(10.83) 

Integrating Eq.(10.82) 

(10.84) 

Substituting W3 from Eq.(10.84) into Eq.(1O.81d)' we get: 

e -u ! b1 dx - 3e -u ! b1 dx = 0 (10.85) 

which is true only if b1 = o. Similarly, it can be shown that b2 = 0 and! 
that 

Therefore, 
W3* (x, t) = C7 + C4 (x - t) (10.86) 

The characteristic function, W *, can be written as: 

which gives 

( 10.88) 

The transformation from nonlinear to linear differential equation 

'U. = u( v} 

can be infinitesimally expressed as: 

Therefore, 

u= V du 
dv 
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(10.90) 

This requires that W32 ( t, x) = 0, so that 

U = In( tI} (10.91) 

is the required nonlinear to linear transformation. 

lOA Limitations of the Inspectional Group Method 

While the inspectional method is simple to apply, there are a number 
of drawbacks that we would like to bring to the attention of the reader: 
(a) In the choice of the transformation, there is a certain amount of trial 

and error and, perhaps, some judgement required. For example, if one 
were to explore linear groups for the problem treated in section 4.2 , 
any of the following forms could have been used: (i) tI = Cl uf'3 U,l: 6, (ii) 
tI = C2u63 Ut"5 (iii) tI = C3U/i, Ut"5 (iv) tI = c4 i'1 U63 

The S's are determined through invariance of the transformation. The 
validity of the transformation can be ascertained by substituting it into 
the nonlinear equation and finding out if the required linear form is 
obtained. 

(b) The invariance process under inspectional groups does not take into 
account the signs between differential terms. For example, both the 
equations 

(10.92) 

and 
(10.93) 

would be invariant under groups (10.15) defined by Eqs.(1O.17) and 
(10.18), giving rise to the same mapping (T). However, only the first 
equation would transform into the required linear form. 

(c) More than a single equa.tion may be invariant under the same group of 
transformations. One example, as we have seen in (b) is when the signs 
between the terms of the equation are ignored. The other example is 
when more terms can be added without affecting the invariance, e.g., 

u2 U 
Uu = tLtL,l: + - + tLt + -x t 

(10.94) 

This leads to the question as to what is the most general equation 
invariant under a given group? BIuman 2 has discussed in his book, 
a procedure to find the most general equation under an infinitesimal 
group of transformations. However, the procedure is not applicable 
when the analysis is sought using inspectional groups. 

(d) Consider now the following equations 

(10.92) 
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( i~) tLu: = tLtLz + Utt 

Eq.(10.92) is invariant under the group,G1 , 

and Eq.(10.95) is invariant under,G2 , 

(10.95) 

IT we seek an invariant transformation that will transform (10.92) 
into the heat equation, and (10.95) into the wave equation (eliminate 
uUz ) ,i.e., 

(10.96) 

we will get u = cVz / v for both cases, since the constraints due to 
the t variable are not brought in. However, only Eq.(10.92) will be 
linearized. 
It can now be seen that although a mapping (T) can be obtained by 

invoking invariance under an inspectional group of transformations, the 
required linear equation may not result. The possible reasons have been 
discussed in this section. 

The infinitesimal group method while being cumbersome, circumvents 
most of the limitations of the inspectional group method. The latter, how­
ever, is quick, simple and a useful technique despite its limitations. 

10.5 Summary 

The concept of invariance has been used to transform a nonlinear dif­
ferential equation to a linear form. The same concept can be used to relate 
any two differential equations. Two procedures have been discussed in this 
chapter; the inspectional group method which is based on simple groups 
of transformation, and the infinitesimal group method based on infinites­
imal Lie groups. While the inspectional group method is easy to apply, 
it suffers from a number of drawbacks. The infinitesimal group method, 
although cumbersome, is a mathematically rigorous procedure which over­
comes most of the drawbacks of the inspectional group method. 
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Chapter 11 

MISCELLANEOUS TOPICS 

11.1 Reduction of Differential Equations to Algebraic Equations 

The reduction of differential equations to algebraic equations developed 
by Moran and Gaggioli 1, represents yet another application of the group 
theory. The method was developed based on the notion of Birkhoff2, that 
whenever a system of equations transform invariantly under a group of 
transformations, solutions that are sought are also invariant under the same 
group. 

Consider for the purpose of illustration, the Helmholtz equation: 

(11.1) 

where >. is a constant. 
Let us introduce a two-parameter group defined as 

Under this group of transformations, Eq.(11.1) can be written as: 

a2 y a2 y a2 y a2 y . 
a -2 + a - 2 + >. 2 Y = a~ a; ( -a 2 + -a 2 + >.2 11) = 0 (11.3) 
~ ~ ~ ~ 

Thus, if !I = F(Xl,X2) is any solution of Eq. (11.1), then !i = F(xi,X2) is 
a solution of the invariantly transformed equation. Furthermore, if J is a 
solution to Eq.(11.1) such that y = J(Xl 1 X2) transforms under group G into 
y = J(XII X2), then the invariant solution can implicitly be written as: 

(11.4) 

where K is a constant. For the group defined by Eq.(11.2)' the "invariant 
variable" can be obtained by eliminating parameters al and ~. Therefore, 
the unknown function 9 in Eq.(11.4) is given by: 

(11.5) 

Combining Eq.(11.4) and Eq.(11.5), we get: 

(11.6) 

Substituting Eq.{11.6) into the Helmholtz equation, Eq.(11.1),withK:;t'0, 
we get the following algebraic equation: 

(11.7) 
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11.2 Reduction of the Order of an Ordinary Differential Equation 

Reduction of the order of ordinary differential equations is well-known 
in literature(see Ames3 or Ince4). Consider a second order ordinary differ­
ential equation: 

(11.8) 

Two special classes of Eqs.(11.8) are of particular importance in engineering 
sciences. In the first class, the independent variable x does not appear in the 
differential equation, whereas in the second class, the dependent variable y 
does not appear. 

Eq.(11.8) can be rewritten as: 

where 

f(q,p,y,x) =0 

tPy 
q=-dz2 and 

dy 
p=­

dx 

We now define an infinitesimal group of transformations: 

x = x + €e(x, y) + O(€2) 

Y = y + €O(x, y) + O(€2) 

P = p + €1!'(x, y, p) + O(€2) 

q= q+€K(x,y,p,q) + O(€2) 

(11.9) 

(11.10a) 

(11.10b) 

(11.10c) 

(11.10d) 

where e, O,1!' and K are the infinitesimals. In terms of the characteristic 
function, W: 

where 

~ = 0 W . 0 = pO W _ W 
... op' op 

-1!'=XW 

o 02 0 
-K = (X2 + 2qX op + q2 op2 + q oq) W 

o 0 
X=-+p-

ox oy 

(11.11) 

The problem is to determine e, O,1!' and K such that Eq.( 11.9) is invariant 
under the group defined by Eq.(11.10). To this end, we employ the equation 
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Uj=e 8j +08j +1r 8j +K8j =0 
8x 8y 8p 8q 

(11.12) 

Substituting Eqs.(11.9) and (11.11) into Eq.(11.12), we can obtain an 
equation in terms of W. 

To get the invariants, the following subsystem is solved: 

(11.13) 

For the case when x is missing, Eq.(11.12) can be written as 

8f 8f 8f O-+1r-+K- =0 
8y 8p 8q 

(11.14) 

It can be shown that the characteristic function is given by W = ap. The 
invariants in this case are II = y, 12 = p, 13 = q. 

Thus, Eq.(11.9) can be expressed in terms of three invariants. IT y is 
taken as the new independent variable, and p as the dependent variable, 
Eq.(11.8} can be written as 

dp 
F(y,p, dy) = 0 

Example11.1 One-dimensional Oscillator 

(11.15) 

Consider now the differential equation for a one-dimensional oscillator 
with quadratic damping 

Ry dy 2 -±c( -) + fly) = 0 
dt2 dt 

(11.16) 

Since the independent variable t is missing from the equation, we can 
take y and p as the new independent and dependent variables, respec­
tively.Eq.(11.16) is then transformed to 

(11.17) 

The order of differential equation is seen to be reduced by one. 

For the case the dependent variable yin Eq.(11.9) is missing, the char­
acteristic function, W, can be found to be a constant. Thus, the new inde­
pendent and dependent variables are x and p, and the order of Eq.{11.8) 
is reduced by one,i.e., 

dp 
cp(x,p, dx) = 0 
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11.3 Transformation from Ordinary to Partial differential Equation-Search 
for First Integrals 

Ames3 has presented a method by which a search for the first inte­
grals of ordinary differential equations can be carried out. The ordinary 
differential equation is transformed into a partial differential equation by 
introducing the functional form of the first integral. Invariance under a 
group of transformations is then invoked, and the resulting invariant so­
lutions lead to the first integrals of the ordinary differential equation. To 
introduce the idea, we consider the Lane-Emden equation: 

(11.19) 

Introducing the transformation z = ,,/x, Eq.(11.19) becomes 

(11.20) 

We now search for a first integral of Eq.(11.20) of the form: 

F(x, ", ,,') = c (11.21) 

Upon differentiation of Eq.(11.21) with respect to x, we get: 

Fz + y' F" + y" F , = 0 

" 
(11.22a) 

and using Eq.(11,20) to eliminate y", Eq.(11.22a) can be written as 

(11.22b) 

Invoking invariance of Eq.(1l.22b) under a linear group of transforma­
tions: 

(11.23a) 

we find that 
r = 2m and n = m(3 - k) 

l-k l-k 
(k#I) (11.23b) 

For m = 0, the similarity variables are found by eliminating parameter a 
from Eq.(1l.23) as 

, ,,' e = :r,I3-k)/(l-k) j '7 = :r,2/(l-k) 

( t: ) _ F(x, ", ,,') 
g .. ,'7 - zl'/m (11.24) 
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Since p is arbitrary, it is equal to zero. Eq.(11.22b} is then transformed to: 

(11.25) 

Using the Lagrangian method 8 , the following first order differential equa­
tion can be obtained: 

(11.26) 

If w(e,,.,} is any solution of Eq.(1l.26), then 

is a solution of Eq.(1l.26) for any differentiable function H. Since 

F(x,y,y') = g(e,,.,) = H[w(e,,.,)] = constant (11.27a) 

is a first int,egral of Eq.(11.20), it follows that 

w( e,,.,) = constant = c (11.27b) 

is an int,egral of Eq.(1l.20). As an example, the first integral for k = 5 in 
Eq.(1l.20), takes the form 

1 
3~6 - e,., + ,,2 = constant 

or, 
, 2 I 1 y6 

x(y) - yy +"3:i3 = constant 

11.4 Reduction of Number of Variables by Multiparameter Groups of 
Transformations 

In chapter 3, we had examined methods for reducing the number of 
independent variables of a partial differential equation by one. If more than 
one variable needs to be reduced, one may repeat the process of invariance 
under one-parameter groups. Clearly, this process is tedious. One may then 
ask whether or not it would be possible to reduce the number of variables 
by more than one in a single step? 

Extending the approach of Morgan, Manohar9 proposed a method 
based on two-parameter assumed group of transformations. Invocation of 
invariance under the group then leads to a series of relationships amongst 
the constants of the transformation group. Elimination of the parameters 
of transformations leads to the absolute invariants. 
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As an application, consider the unsteady, tw(}odimensional, laminar 
boundary layer equations: 

subject to the boundary conditions: 

11 = 0: a,p = a,p = 0 
ax a1l 

1/=00: 
a,p a = U(xJ t) 

11 

(11.28) 

(l1.29a) 

(11.29b) 

Consider first the tw(}oparameter group of transformations defined by 

,p = Aa, Bf/,iP ; U = Aas Bf/s U 

The condition for the invariance of Eq.(1l.28) under this group of transfor­
mations requires that 

1 1 
el3 = -ell ; el4 = - -ell; els = -ell 

2 2 

(33 = 0 ; f34 = f3s = (31 

The absolute invariants are therefore 

U 
c=-­

t-lx 

Similarity solution exists if the mainstream velocity is given by 

x 
U= c­

t 

Eq.(11.28) is then transformed to the following equation: 

subject to the transformed boundary conditions: 

,.,=0: i=l=o j ,.,=00: 1=1 

(11.30) 

(l1.31a) 

(11.316) 

(1l.32a) 

(l1.32b) 

It must be ensured that the similarity representation constitutes a 
"complete set of absolute invariants". Theorems relating to the formalism 
of multiparameter groups are discussed in Moran and Gaggioli 10. The 
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formalism for elementary cases using the two-parameter "assumed" group 
is discussed by Ames 11, and can be summarized as follows: 

(1) For the two-parameter linear group G21 

Yi = A<lj Bt'I; Yi 

The absolute invariants are: 

and 

(j = 4, .... , n) 

y' 
1;{'7) = Xl<l;/<ll~t'I;/Pl (j=4, ... ,n) 

(2) Similarly, for the group G22 defined by 

Yi = e<ljABt'I;flj 

The absolute invariants are: 

y. 

1;('7) = e(a;/adtr.1JZ2(f1i/f1d 

(3) For the group G23 , 

l1i = A<lj et'l;B Yi 

The absolute invariants are: 

and 

f- ('7) - -. -,--~Yi.".....-;-:,--,-
J - X1<lJ/al eIPj/fldtr.2 

(4) For the group G24 , 
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(j = 4, ... n) 

(j = 4, .'" n) 

(j = 4, ... , n) 

{1l.33} 
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U = 4, ... , n) 

The absolute invariants are 

and 
(j = 4, ... , n) (11.36) 

Application of this method has been made to the three- dimensional 
boundary layer equations 9 and to the nonlinear diffusion 11 • 

Consider again Eq.(11.28). In an abbreviated form it can be written 
as: 

where 

and 

F = P333 + <P - Pl3 - P3P23 + P2P33 = 0 

a,p a,p a,p a2,p 
PI = at ; P2 = ax ; P3 = ay ; Pl3 = at1Jy ; etc 

A. = au uau 
If' at + ax 

(11.37) 

On applying the infinitesimal group method, the differential equation 
F = 0 as given in Eq.(11.37), will be invariant under the two-parameter 
infinitesimal transformation group: 

p* 2 = P2 + €11T'2(t,x,y,,p,PI,P2,P3) 

+€2 7r2(t,x, y,,p,PI,P2,P3) 

p* 333 = P333 + €11T'333 (t, x, y, ...... , P333) 

+€27r333 (t, x, y, ... , PIll) 

Invariance of Eq.(11.37) gives: 
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Since C1 and C2 are arbitrary, we have 

(11.39) 

simultaneously. In their expanded form, they can be written as: 

(l1AOa) 

and 
aF aF aF aF aF 

a1Tt + a28; + a3 ay + ~ a,p + lti api 

aF aF 
+11',:;- + ltijk-- = 0 

apij apijk 
(11.40b) 

Putting F from Eq.(1l.37) into Eq.(1l.40), we get: 

(llAla) 

and 
_ + a¢ _ + a¢ _ _ "'" _ 
11"333 a;(l1 ax (l2 - 11"13 - P3 1'23 - P2311"3 

+1t2P33 + P21t33 = 0 (11.41b) 

The next step is to express the transformation functions or the in­
finitesimals Q1,Q2,etc., in Eq.{1l.41) in terms of a characteristic function 
Wj and Q1,Q2, etc., in Eq.{1l.41) in terms of a second characteristic func­
tion W. This differs from the one-parameter method in that two charac­
teristic functions, instead of one, have to be determined from Eqs.{1l.41a) 
and (11.41b). We choose, as an example, two groups as follows: 

G1 Wj independent of P1 

G2 Wj independent of P2 

By following the same procedure as in the one-parameter method, the 
characteristic function WI and W2 can be found from Eqs.{1l.41a) and 
(11.41b). respectively. The results are 
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and 

(11.42) 

where WU11 W211 and W212 are constants, W112 is an arbitrary function of 
t, and () and 8 are arbitrary functions of t and x. In addition, the following 
two equations have to be satisfied: 

a4> [ ] ff- W1l2 
ax Wlllx+ W1l2 (t) - 4> Wll1 - dt = 0 

and 
a4> 

4> W211 + at (W211 t + W2l2 ) = 0 

With the characteristic functions Wl and W2 for the two groups, Gl 

and G2 known, the next step is to find the absolute invariants. For the 
combined two-parameter group of transformations, the absolute invariants 
can be solved from the following system of equations: 

dt dx dll ---= =---
dt/J 

= --_ = Clfl (11.43) 
~+~ 

where a = C2/C1. Substituting the characteristic functions into Eq.(11.43), 
we get: 

dt dx dy 
a(W211t+ W212 ) - Wll1X+ W1l2 (t) = ()z+a(O.5W2111l+8z) 

dt/J 

(11.44) 

As an example, consider the case in which () 18, W 112 and W212 are all 
zero. Eq.(11.44) then becomes: 

dt dx dy 
a W211 t = Wll1 X = O.5a W211 11 = Wll1 t/J - O.5a W211 t/J 

= C1fl (11.45) 

The three independent solutions are 

(l1.46a) 

199 



www.manaraa.com

y 
t1/2 = C2 (11.46b) 

and 
!/J 

t( Wu d(aW211 1-1/2) 
= C3 (11.46c) 

As a final step, the parameter "a'll has to be eliminated from Eq.{11.46). 
We then get 

y I/J ~ 
1/2 = C2 and -1/2 = - (11.47a, b) 

t zt Cl 

which are obtained by eliminating a from Eqs.(11.46a) and (11.4&). The 
similarity variables are therefore 

which are the same as those obtained by Manohar's method. The boundary 
conditions at the edge of the boundary layer is then transformed to: 

which gives: 

'1 = 00: =/(00) = U(z, t) 
t 

z 
U(z, t) = t 

To show the general nature of this method, consider now two other 
groups, namely, 

G3 : a general infinitesimal -transformation 

G4 a general infinitesimal transformation with W4 

independent of P3 

By following the same steps as for groups G1 and G2 , we get: 

1 aB 1 
+(2 W311 Y+ az)P3+ (2 W311 - W32dI/J 

dW322 aB ---y+-
dt at 

and 
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(11.49) 

where W3111 W3l21 W32l1 W4b and W42l are constants, W3221 W422 and 
W4322 are functions of t, and B( t, x) is an arbitrary function of t and x. In 
addition, the following equations have to satisfied: 

1 dW32 -t/J[- W311 - W32l (t)]- P3-- = 0 
2 ~ 

(1l.50a) 

and 

(11.50b) 

According to the theorems presented in section 2.8, the absolute in· 
variants can be solved by the following system of equations: 

dt 

dx 
= ~----~~~~~~----~--~ 

[W32lX+ W322 (t)] + a[ W42l X+ W422 (t)] 

dy = -::---....:...--..".:-
1 W + lJB 2 311 Y lJx 

(11.51) 

As an example, we consider the case in which B, W322 , W421 and W4322 

are all zero and W32l and W422 are constants. For this case, Eq.(1l.51) 
becomes: 

dt 
~----~----~-= W311 t + W3l2 + a W41 

d,p 
= 1 = eldel 

( - 2 W311 + W32l ),p 
(11.52) 

The three independent solutions to Eq.(1l.52) are: 
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t/J -C 
(WSllt+ WS12 + aW4dn-1/2 - S 

where n = WS2d WSll ' .For the special case in which n equals to 1 and 
WS12 = O,elimination of "a" from the above equations results in: 

y t/J 
-;:;;r.=:::::;:=m== = C4 and = Cs JW4s2 t- W41 x JW422 t- W41 X 

The similarity variables are therefore: 

'1 = Y j 1('1) = t/J JW422 t- W41 x v'W423 t- W41 x 
(11.53) 

which is the second transformation obtained by Schuh 12. 

The boundary conditions at the edge of the boundary layer is trans­
formed to the form: 

'1 = 00: 1(00) = U(x, t) 

which means U has to be a constant. It can be shown that this form of U 
satisfies Eqs.(11.50). For other values of n, the process of eliminating n is 
quite difficult. No attempt will be made to discuss this problem here. 

11.5 Self-Similar Solutions of the First and Second Kind 

Self-similar solutions result from the invocation of invariance under a 
dimensional or an affine group of transformations. Such solutions can be 
expressed as: 

1£(x, t) = m(t~F[l(t)] (11.54) 

where x and t are independent variables that may sometimes be interpreted 
as a spatial coordinates and time, respectively. The term "self-similar" 
comes from the fact that the spatial distribution of the characteristics of 
motion,i.e., of the dependent variables, remains similar to itself at all times 
during the motion. 

Self-similar problems have been investigated for some time by Soviet 
researchers. Sedov13 has extended the traditional dimensional analysis 
techniques to obtain self-similar solutions. In his method, self-similar solu­
tions represent solutions of the degenerate problems for which all constant 
parameters entering the initial and boundary conditions and having the 
dimensions of the independent variables vanish or become infinite. Baren­
blatt and Zel'dovich 14 have pointed out that self-similar solutions describe 
the "intermediate asymptotic" behavior of solutions of wider classes of ini­
tial, boundary and mixed problems,i.e., they describe the behavior of these 
solutions away from the boundaries of the region where in a sense the so­
lution is no longer dependent on the details of the initial and/or boundary 
conditions, but the system is still far from being in a state of equilibrium. 
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The treatment of self-similar solutions as intermediate asymptotics en­
ables one to understand the role of dimensional analysis in their construc­
tion. The use of dimensional analysis implies a certain regularity of the 
limiting process when going from the original non-self-similar solution of a 
non-degenerate problem description to the degenerate self-similar descrip­
tion. Such problems are known as "self-similar problems of the first kind". 
Sedov13 provides a number of self-similar solutions of the first kind, es­
pecially for problems in gas dynamics. There are, however, a wide class 
of self-similar problems in which the similarity variables are determined 
not only from dimensional considerations alone, but from the study of the 
transition process of the non-self-similar problem to an intermediate asymp­
totic. This transition is not regular and dimensional considerations must 
be supplemented by the solution of a certain "eigenvalue problem". These 
problems are classified as "self-similar problems of the second kind" 14.15. 

In terms of group invariance, solutions obtained using traditional dimen­
sional analysis would give rise to self-similar solutions of the first kind, and 
solutions obtained by the use of affine groups would lead to self-similar 
solutions of the second kind. 

The formation of a blast wave produced by an intense explosion dis­
cussed in section B.2 is an example of self-similar solution of the first kind. 
The exponent Q is equal to 2/5 from dimensional considerations, and the 
parameter 0 is determined by satisfying the energy integral, Eq.(B,47). 
The motion of the shock front,S(t), was described in Eq. (8.52). 

~ = 00 o ~ __________ ~ ____________ ~ 

1 
t 

Fig. 11.1 The Implosion Problem 

The problem of an implosion of a spherical shock wave is an example 
of self-similar problem of the second kind (see Fig.11.1). A spherically 
symmetric shock wave travels to the center of symmetry through a gas of 
uniform initial density Po and zero pressure. The origin for time t = 0 is 
caken as the instant of collapse,i.e., when R( t) = O. Therefore, the time 
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up to the instant of collapse is negative. The similarity transformation 
and representation is given by Eqs.{8.49) and (8.50), respectively. For this 
problem a cannot be determined by dimensional arguments. The wave 
could be thought of as being generated by a "spherical piston" which pushes 
the gas inwards and imparts a certain amount of energy to it. As the 
wave converges to the center, the energy becomes concentrated at the front 
and the wave is strengthened. The conservation laws do not hold as was 
.previously the case in the intense explosion problem. Therefore a cannot 
be determined using the conservation integral. The variation of R( t) with t 
would no longer be proportional to (J/s but to some exponent a, such that 
R( t) is proportional to F . 

For the implosion problem, the limiting characteristic through the ori­
gin lies in the region of disturbance. Therefore, during the integration of 
Eqs.{8.50) and (8.51) between ~ = 1 and ~ = 00, the singularity will occur 
on the curve 

However, if one is to expect a solution to continue smoothly across the 
limiting characteristic, then the right hand side of Eq.(8.50) would be zero. 
The exponent a is chosen so that the solution is non-singular. The pa­
rameter C is obtained from consideration of the limiting passage from the 
original non-self-similar problem to the degenerate self-similar problem. 

For more information on self-similar solutions readers should refer to 
Sedov13 and Zel'dovich and Raizer1S • 

11.6 Normalized Representation and Dimensional Consideration 

In chapter 3 the group-theoretic procedure of Hellums and Churchill 
was described. The problem of finding the minimum parametric description 
can be directly related to the problem of finding (a) the minimum descrip­
tion in terms of the independent variables or (b) a nondimensional represen­
tation. H the minimum parametric description involves arbitrary reference 
variables, then the elimination of the reference variables would lead to sim­
ilarity transformations. However, if the arbitrary reference variables are 
completely specified, then a normalized representation would result. This 
type of representation is suitable for scale-modeling and semi-analytical 
investigations. 

We will now consider the problem of forced vibration of a single degree 
of freedom spring-mass system, as shown in fig.11.2. M is mass, K is the 
stiffness of the spring,x is displacement and t is the time. The periodic 
force acting on the mass is F = Focos(,8t), where Fo is the amplitude of 
the periodic force and ,8 is the forcing frequency. 
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The equation of motion leading to the vibration response is 20: 

tPx 
M dt'2 + Kx = Focos(~t) (11.55) 

We introduce the transformations 

x _ t 
z= - and t=-

Xo to 

such that x and t are non-dimensional. The arbitrary reference variables Xo 
and to are determined by seeking a minimum parametric description. The 
transformed equation of motion is 

M (tPZ) Fot5 _ 
Kt5 e + z= MXo cos(~tot) 

The parametric description of the problem can be written as 

-- STATIC EQUILIBRIUM 
POSITION 

F(t) = FoCOS(~t) 

Fig. 11.2 Spring Mass System 

(11.56) 

(11.57) 

IT we want to determine the steady state response, we should identify 
Xo with the static deflection under dynamic load (Fo),i.e., 

Fo 
OBtatic = K 

For a minimum parametric description, we set 

M = 1 and Fo ~ = 1 
Kt5 Mxo 
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Therefore, we get 
1 

to = - and 2'<l = 8.tatic 
Wn 

The resulting problem statement is given by the expression 

(11.58) 

The analytical solution for the steady state response has been determined 20 

as: 
(Fo/ K) . 

x = ( f3 )2 Stn(wnt) 
1- -

w" 

(11.59) 

This example is an illustration of the use of the Hellums- Churchill 
procedure for obtaining a normalized representation of a boundary value 
problem. 
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Problems 

1. Show tha.t the transformations 

forms a group. What is the identity element? 
2. Show that the infinitesimal transformations 

x= x+€X(x,y) + O(€2) 

Y = y+€Y(x,y) + O(€2) 

form a group. What is the identity for the transformation? By evalu­
ating the Jacobian of the transformation, show that the inverse exists. 

3. Are the parameters in the group 

essential or non-essential? 
4. Find the infinitesimal group of transforma.tions corresponding to the 

finite group of transformations 

y = e2a y 

5. Find the finite group of transformations corresponding to the infinites­
imal group 

x = x+ €(x- y) + O(€2) 

fI = y + €(2y) + O(€2) 

6. Find the invariant functions of the following: 

(ii) Uj= xaj _ yaj 
ax ay 

7. Find the global groups corresponding to the following: 

af af (l) Uf = z2- + xy-ax 8y 

208 



www.manaraa.com

(")UI zaf u =e-ax 

(iitl Uf= x:~ 

8. What is the significance of the characteristic function? Comment on 
the differences between the Na-Hansen characteristic function method 
and the BIuman-Cole infinitesimal group method of invariance analy­
SIS. 

9. When does the method of traditional dimensional analysis fail to yield 
similarity transformations? What is the effect of assigning independent 
dimensions to different directions of the coordinates? Comment on 
the consequences of specifying too many independent dimensions for a 
physical problem. 

10. The classical separation of variables solution to the linear heat equation 

or the linear wave equation 

can be written as 
u(x,t) = X(x)T(t) 

Invoking invariance under the inspectional group of transformations, 

show that the separation of variables solution can be obtained as: 

For certain forms of nonlinear partial differential equations, can a sep­
aration of variables type of solution be expected? 

11. Find the fundamental solution for the linear wave equation 

Utt - Uzz = 8(x)8(t) 

subject to the initial conditions 

U(x,O) = Ut(x,O) = ° 
by using the inspectional and infinitesimal group methods. 
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12. Consider the nonlinear Klein-Gordon equation 

Invoking invariance under a group of transformation, the invariant 
solution can be obtained as 

Solutions such as above arises in connection with dispersive waves. IP 
is the frequency and k is the wave number, where w = w(k). The 
resulting ordinary differential equation takes the form 

(w 2 - ~)t/Jee + V'(t/J) = 0 

Show that the solution to the above equation can be written as 

_[1( 2_ 2)]1/2/ dt/J e - 2 w k [A _ V(,p)]1/2 

where A is a constant of integration. Periodic solutions are obtained 
when,p oscillates between two simple zereos of [A- V(,p)]. Hthe zeros 
are denoted by ,p1 and ,p2 such that 

then with the period in 0 normalized to 211", the periodic solution writ-
ten as 

_ [~ 2 _ 2)] 1/2/ d,p 
211" - 2 (w k [A _ V(,p)j1/2 

Find the solutions ¢> = ,p(e) and the dispersion relationship for the 
following forms of V ( ,p ) : 

( i) V(,p) = ~,p2 
2 

1 
( ii) V(,p) = _,p2 + a,p4 

2 

( iii) V(,p) = ~,p3. 
Details of the analysis of dispersive waves are given in a book by G.B. 
Whitham entitled "Linear and Nonlinear Waves", Wiley-Interscience, 
1974. Involking invariance under an infinitesimal group of transfor­
mations, obtain all possible invariant solutions for the Klein-Gordon 
equation along with corresponding forms of V (¢> ). 
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13. The differential equations governing free convection on a vertical plate 
can be written as: 

where 

au + av = 0 
ax ay 

au au a2u Ow - 000 
u ax + v ay = II ay2 + g 000 0 

ao ao a'J.o u-+v- =Q-ax ay ay2 

0-000 

0= Ow - 000 . 

and the boundary conditions are 

y=O: u=v=O j 0=1 

y=oo: u=Oj 0=0 

Using the modified dimensional procedure, show that the three 'Ir terms 
are 

_ [ 000 ]1/2 
'lr3 - U g(Ow - Ooo)x 

Show that the similarity transformation is given by 

and 
r.:[g(e w - eoo )]1/4 -1/4 ( ) 

V = VII eoo x g 'lrl,'lr2 

For a wall temperature distribution of the form 

and with blowing through the surface, show that a similarity solution 
is possible if v at the wall is proportional to x(n-l)/4. 

14. The equations for the problem of velocity impact of a semi-infinite 
one-dimensional rod can be written as 

a(J av 
-=-p­ax at 
ae av 
at = - ax 
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ae = fwPe'l 
at 

x is the Lagrangian space coordinate, t is the time,O', e and v are 
the nominal compressive stress, nominal compressive strain and par­
ticle velocity, respectively. k, p and q are material constants for rate­
sensitive strain-hardening materials. The boundary conditions are 

v(O,t)=vct' , t>O 

v(x,o) = O'(x,O) = e(x,O) = ° , x~O 
Based on physical considerations, 

v(oo, t) = 0'(00, t) = e(O, 00) = 0 

Using the Hellums-Churchill or Birkhoff- Morgan method show that 
the similarity transformation can be written as: 

v(x, t) = ve f f(e) 

where 
_1_ -L-- ..£±.i..=1. p-q-",(p+q-l) e = x[ kq-p-l pq-p-l Vc q-p-l t p q+l 

(a) Obtain the transformed ordinary differential equations. 
(b) For p = 1, q = 0,0:#0, show that the solution can be written as 

where t?'or. erJc(e/2) is the repeated integral of the error function. 
( c) For q = ° (corresponding to rate-sensitive material) and 0: = 0, show 

that the solution can be expressed as follows: 

re d). 
v(x,t) = vc[l- 10 (C+.8A2)P/IP-l)] 

where .8 = p(p - 1)/[2{p + 1)]; and 

C = [4,8 r{p/{p - 1) ] 1-~P:\P 1) 

1r r[p/{p - 1) - 1/2] 

Reference: Seshadri, R. and Singh, M.C., "Similarity Analysis of Rods 
of Nonlinear Rate- sensitive Strain-hardening Materials" ,Archives of 
Mechanics, 28,I,pp.63-74 (1976). 
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15. The problem of elastic expulsion of Newtonian fluids from long pres­
surized tubes can be described by the nonlinear equation 

where R is the inner radius of the tube; the subscript 0 refers to the 
relaxed condition, and subscript 1 refers to the fully extended condi­
tion, x is the axial distance from the point of severance of the tube, t 
is the time,j.t is the fluid viscosity and k is the tube wall compliance. 
The initial and boundary conditions are 

R(x,O) = Rl ; R(O, t) = flo j R(oo, t) = Rl 

By the use of any of the techniques described in Chapter 3, show that 
the similarity transformation can be expressed as 

R - flo 2x [ii 
Rl - Ro = 4>(e), where e = flo V kt 

and the similarity representation can be written as: 

where 0: = ~. The auxiliary conditions then become 

4>(0)=0 4>(00) = 1 

The solution of the above ordinary differential equation can be ob­
tained in the form of a quadrature. When Ro approaches R, i.e., 0: 

approaches 1 show that the solution is 

4>(d = erf(d· 

The above problem formulation has applications in biophysics. Specif­
ically, the problem deals with the deformation of tube walls under 
variations of internal pressure (latex tubes of trees, nerve fibres and 
blood vessels). Details of the solution are discussed by G.S.H. Lock 
in a paper entitled "Elastic Expulsion From a Long Tube", Bull. of 
Math. Biophysics, Vol.3! (1969). 

16. The process in which a wetting fluid desplaces a non-wetting fluid 
that initially saturates a porous medium by capillary forces alone is 
known as imbibition can be found in the area of hydrogeology and 
petroleum recovery. For a cylindrical piece of a porous matrix under 
simplifying assumptions, a variable S which depends on the displacing 
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phase saturation, Sj (such that S = 1 - exSj and ex = constant), the 
imbibition process can be described by the nonlinear equation 

Co, Cl, C2 and C3 are constants which can be expressed in terms of the 
physical parameters of the problem, x is the space coordinate and t 
is the time. Using Birkhoff-Morgan method, show that the similarity 
transformation can be expressed as: 

S(x, t) = C 6/(Hl) F(~), 
x 

where ~ = t l /(2H2) 

'lransformation of the partial differential equation into an ordinary 
differential equation and subsequent integration is discussed by Verma, 
A.P. and Mishra, S.K. in a paper, "Similarity Solution for Imbibition 
in Porous Media,", which appears in Symmetry, Similarity and Group 
Theoretic Methods in Mechanics, Calgary, Canada (1974). 

17. A nonlinear wave equation, that is encountered in affine connection 
field theory and also in one-dimensional gas dynamics with a particular 
local rate of combustion, can be written as: 

a2 ¢> 2-1. a¢> _ a2 ¢> = 0 
atz + 'I' at ail-

a¢> 
¢>(x,O) = ex(x) j Tt(x,O) = ,B(x} 

(a) Using inspectional group procedures, obtain the similarity trans­
formation 

1 x 
¢>(x,t) = t'(~} j ~= t 

What boundary conditions are compatible with the above similarity 
representation? Integrate the ordinary differential equation analyti­
cally or numerically. 
(b) Show that invariance of the equation under a group of translations 
x = x + Xo, t = t + to, ft = tL gives rise to the traveling wave solution 

The ordinary differential equation obtained is 

g" + 2g g' = 0 

The solution can be written as 

g = Tanh(~ + ~o) 
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which is an exact simple wave solution. The initial waveform propa­
gates without change of shape or amplitude at constant velocity (cs/ C2) 
in the x direction. 
(c) Using a deductive group procedure, obtain various invariant solu­
tions including those described above in (b) and (c). 
(d) Is it possible to transform the nonlinear wave equation to any of 
the following linear forms using inspectional methods? 

( a) 

( b) 

( c) 

a20 a20 
at2 - ax2 = 0 

a20 
-=0 
axat 

a20 ao a20 
ap + at - ax2 = 0 

Details of the similarity analysis is given in a paper by G. Rosen entitled 
"Solutions of a certain Nonlinear Wave Equation" that appear in the 
Journal of Math. Phys., 45, 235 (1966). 

18. Using the infinitesimal group of transformations 

u = tt + € U(x, t, ttl + O(€2) 

t= t+€T(x,t,tt) + O(€2) 

X = X + €X(x, t, ttl + O(€2) 

obtain the invariant solutions for the nonlinear heat conduction equa­
tioin 

!...[O(u)OU] = att 
ax ax at 

Specifically obtain the following infinitesimals and the associated sim­
ilarity representation: 
(a) X(x) = Bx+"I 
(b) T( t) = 2A + 2Bt; U( ttl = 0 ; O( u) is arbitrary 
(b)X(x)=(~+B)x+"I; T(t)=2A+2Bt 
U(tt)=2t(tt+k) ; O(tt)=>.(u+k}" 
(c)X(x) = (,8 + B)x+ o:i' +"1 
T(t) = 2A + 2Bt ; U(tt) = -~(tt+ k)(2o:x+~) 
O(tt} = >.(tt+ k)-4/3 
The problem has been worked out in detail by G. W. Bluman in his 
Ph.D. thesis entitled "Construction of Solutions to Partial Differential 
Equations by the Use of Transformation Groups", California Institute 
of Technology, Pasadena, California (1967). 

19. The Stokes second problem described in section 6.1 of this book in­
volves the determination of the following boundary value problem: 

a2u au 
V-=-' 

oy2 at 

215 



www.manaraa.com

u(O, t) = Uo cos(wt) j u(oo, t) = u(y,O) = 0 

Using the method of pseudo-similarity transformations, obtain the so­
lution to the above boundary value problem. Compare the solution so 
obtained with the closed form result, 

y(y, t) = Uo exp-..j'JJ.JJ~ cos(wt-~) 

where y 
~ = 2yVt' 

20. Paul Chambre, in an article entitled "The Laminar Boundary Layer 
With Distributed Heat Source or Sink" in Applied Scientific Research, 
Sec. A, Vol.6 discusses the problemof temperature distribution during 
flow over a flat plate. In a particular case of a distributed heat source, 
the following special equation for a temperature T is obtained as 

The similarity variable is given by 

~ = (VO)(_y )j 
II x1/ 2 

Vo is the mainstream velocity and F(d is the Blasius function. The 
boundary conditions are 

00 

T=I)n(i)n for ~=oo 
n=O 

T = 0 for ~ = O. 

Assuming a solution for T of the form 

00 

T(~,x) = I)n(i)nGnk) 
n=O 

where Gn(d satisfies the equation 

Id' 1 I I -p n + -FG n - nF Gn + n = 0 
r 2 

Systematically derive the steps outlined above using a one-parameter 
group of transformations. 
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21. The equation governing heat conduction in spherically symmetric de­
scription can be written as 

If at time t = 0, an energy of E is released at r = 0, then the law of 
conservation of energy gives 

T( r, t)411"rZ dr = - = Q. 100 E 
o pCt) 

Assuming k( T) = ex Tn, obtain the similarity transformation 

fll/3 
T(r, t) = [_~_p/(3n+Z) 4> (e), 

at 
r 

where e = (ex Qnt)1/(3n+Z) 

Show that the moving boundary propagates at a finite speed given by 

R(t) = eo(exQnt)1/(3n+Z) 

where 
e = [ 3n+ 2 r(~ + ~) ]n/(3n+3) 
o 2n-11l"n r(l + ~)r(~) 

What happens to the speed of propagation when n approaches to O? 
What does this mean from a physical standpoint? 

22. In a paper entitled "On Similarity Solutions of Wave Propagation for a 
General Class of Nonlinear Dissipative Materials" that appeared in the 
Int'l J. of Nonlinear Mechanics, Vol. 11, 1976, Chand et al use the de­
ductive group method based on finite group of transformations to find 
a number of different invariant solutions for the system of equations: 

(momentum) 

av af. 
- - - (compatibility) ax - at 

a€ m aa 
a+A1€+Az(at) +A4 (Tt)"=0 

( constitutive relationship) 

An exhaust analysis is presented in the paper, and the thrust of the 
work is mathematically motivated. Introducing the conditions at the 
moving boundary for characteristic propagation, examine the problem 
from a physical standpoint by invoking the ideas presented in chapter 
8 of this book. 
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23. The steady-state temperature distribution for heat conduction with 
heat generation according to the exponential variation can be written 
as 

1d(i8T ) T -,.- r- +pe =0 
r' dr 8r 

0< r< R 

where i = 1 for cylindrical symmetry and i = 2 for spherical symmetry. 
The boundary conditions are given by 

dT 
-=0 
dr 

T(l) = 0 

Transform the two-point boundary value problem into the following 
initial value problem: 

1 d ( . dy) -:-- x'- + pe" = 0 
x' dx dx 

dy(O) = 0 
dx 

using the group of transformations 

y(o) = a 

For details of the solution, readers should refer to the paper by Na,T.Y. 
and Tang, S. C.,- "A Method For the Solution of Conduction Heat 
Transfer With Nonlinear Heat Generation", ZAMM, 49 (1969). 

24. Using the infinitesimal group method described in chapter 10, we will 
derive the mapping that will transform the Burger's equation 

into the linear heat equation 

ILu = ILt 

The infinitesimals for the heat equation have already been derived in 
chapter 3. Assume the mapping to be of a general form 

v = F(x, t, IL, ux , ut} 

so that, infinitesimally, 

8F 8F 8F 8F 8F 
V = X-a + T-a + U-a + UX -a + Ut -a x t U Ux Ut 

where Vx and Vt are the "extended infinitesimals" of the group for 
the linear heat equation. For non-zero value of the parameters of the 
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group, a system of partial differential equations can be solved to give 
the Hopf-Cole transformation 

Details are given in the article by G.W. Bluman: "Use of Group Meth­
ods for Relating Linear and Nonlinear Partial Differential Equations", 
Symmetry, Similarity and Group Theoretic Methods in Mechanics, 
Calgary, Canada, 1974. 

25. Using the infinitesimal group of transformations, show that the map­
ping that will transform the equation 

into equation 

can be obtained as tI = -21n( tt}. 
26. Show that the mapping that will transform equation 

into the linear form W zy = 0, can be derived as 
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Absolute invariance, 17,41,48,75 
Additive group,6 
Algebraic equation,190 
Associative law,8 

Bar, 100 
Blasius equation,157 
Blast wave,147 
Boundary layer,70,195 

compressible,49 
Three-dimensional,49 

INDEX 

Boundary value problem,2,114,125,157,162 
Bulk modulus,119 

Characteristics, 138, 139, 148 
Chemical exchange process,178 
Conduction 

heat,109,128,138 
natural, 117 

Conical shaft,75 
Compressive strain,143 
Compressive stress,143 
Constitutive model,66 
Continuous transformation group,5,10 

Diffusion of vorticity,18 
Diffusion equation,2,58 
Dimensional matrix, 37 ,38,69 

Elastic material,67 
Equation 

Bernoulli, 173 
Blasius, 157 
diffusion, 135 
elliptical, 125 
Euler-Poisson-Darboux,110 
Helmholz,190 
invariant surface,21 
Klein-Gordon, 150 
Korteweg-de Vries,152 
linear heat,36,133 
quasilinear parabolic,163 
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quasilinear partial differential,137 
wave propagation,137,142 

Element of a set,S 

Finite Difference,116 
Formation of a shock wave,147 
Free convection,71 
Freezing problem,92 
Function 

characteristic,20,S2,82,160,165,172,191,198 
elliptical, 151 
Gamma, 132 
Green, 122 
Heaviside,122 
invariant, 14 
transformation, 12, 198 

Fundamental solution,114 

Gas dynamics,82 
Grashof number,73 
Green function,122 
Ground water fiow,114 
Group 

additive,6 
afline,30,32,42 
algebraic,S 
continuous transformation,S 
dimensional,30,99,154 
global transformation, 11, 12 
identity,6 
infinitesimal,18,S2,82, 160, 170 
linear, 13,42,79, 164, 190 
rotation,14 
simple, 1 
spiral,14,41,81,98,99 
transformatioin,l, 7 ,8,15 

Group theoretic method,l 

Hea,t conduction,109,138 
Heat equation,39,49,99 
Hugonoit condition,146 
Hyperbolic equation,125,137 

Identical element,6 
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Implosion problem,203 
Infinitesimal,22,27 ,49,52,170,191 
Initial value problem,3,157,165 
Inspectional group method,3 
Integral transform,110 
Invariance,13,15,16 
Invariant 

absolute, 17 
boundary condition,94 
conformally,17,49,79 
constant conformal invariant,41 

Invariant surface,50 
Inverse,6 

Jacobian,8 
Jet 

Two-dimensional,62 
heated,77 

Lagrangian space coordinate,143 
Linear diffusion equation,169,175 
Linear heat conduction,108 
Linear vortex,68 
Longitudinal impact,163 

Mapping, 1 
Maxwell solid,66 
Method 

Birkhoff and Morgan,39,58,74,77,133 
BIuman and Cole,49,111 
characteristic function,35,52,82 
dimensional analysis,37,70 
finite group,35 
Hellums-Churchill,42,44,71,131 
infinitesimal group,35,49,157 
inspectional group,171,187,197 
Moran and Gaggioli,44,48 
Morgan's theorem,45,47 

Moving boundary problem,3,125,129,134,142 
Multiparameter group,l94 

Natural convection,117 
Needle,71 
N on-chara.cteristic propagation, 150 
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Noether transformation,119 
Nonlinear differential equation,169,175 
Nonlinear diffusion,197 

One-dimensional oscillator, 192 
Operation of a transformation,7 

Parameter 
essential,7 
transformation,7 

Plate 
non-isothermal, 117 
non-Newtonian flow over,120 
wedge-shaped,74 

Phase change problem,126 
Pi-term,38 
Propagation 

along characteristics,138,149 
non-characteristic, 145, 150 
speed,128 

Pseudoplastic fluid,120 
Pseudo-similarity transformation,114,l17,119 

Radiation, 128 
Rainfall Runoff,141 
Rank of matrix,69,71 
Reynolds number,l19 
Rod 

impact of,64 
longitudinal, 143 

Self-similar solution,71,202 
Shock waves,139,145 
Solution 

eigenvalue, 100 
fundamental,108,l14 
invariant, 17 
non-similar,103,121 

Speed of propagation,145 
Spiral flow,96 
Spring mass system,205 
Stokes problem,103 
Stokes stream function,72 
Strain,163 

223 



www.manaraa.com

Stream function,63 
Stress,163 
String,141 
Superposition, 104 

Thaw consolidation,l06 
Thermal conductivity,128 
Transformation 

affine group of,30,72,74 
extended group of,18,20 
identical,8,10 
identity,9 
infinitesimal, 10,15,53,57 
inverse,S 
LeiQnitz,174 
point,169 
twice-extended group of,19 

Translation group,154 
Traveling wave,151 
Twice-extended group of,19 
Two-parameter group,196 

Vertical needle,71 
Viscoplastic impact,163 
Viscous dissipation,80 

Wave 
elascoplastic,153 
nonlinear, 141 
plane,131 
shock, 139,145 
solitary, 153 
thermal, 130 
traveling, 145 

Wave front,140 
Wave propagation problem,137 
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